[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/sce/scecf9/1011.html
   My bibliography  Save this paper

Genetic Algorithms and Economic Evolution

Author

Listed:
  • Thomas Riechmann

    (University of Hannover)

Abstract
This paper tries to connect the theory of genetic-algorithm (GA) learning to evolutionary game theory. It is shown that economic learning via genetic algorithms can be described as a specific form of evolutionary game. It will be pointed out that GA learning results in a series of near Nash equilibria, which, during the learning process, build up finally to reach a neighborhood of an evolutionarily stable state. In order to clarify this point, a concept of evolutionary stability of genetic populations is developed. It then becomes possible to explain the reasons for the dynamics of standard GA learning models as well as those of extensions to this standard.

Suggested Citation

  • Thomas Riechmann, 1999. "Genetic Algorithms and Economic Evolution," Computing in Economics and Finance 1999 1011, Society for Computational Economics.
  • Handle: RePEc:sce:scecf9:1011
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boldea Bogdan Ion & Boldea Costin-Radu & Stanculescu Mircea, 2009. "An Adaptative Evolutionary Model Of Financial Investors," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 4(1), pages 897-901, May.
    2. Jie-Shin Lin & Chris Birchenhall, 2000. "Learning And Adaptive Artificial Agents: An Analysis Of Evolutionary Economic Models," Computing in Economics and Finance 2000 327, Society for Computational Economics.

    More about this item

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:1011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.