[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/rsm/murray/m09_2.html
   My bibliography  Save this paper

Turning Water into Carbon: Carbon sequestration vs. water flow in the Murray-Darling Basin

Author

Listed:
  • Peggy Schrobback

    (Risk & Sustainable Management Group, School of Economics, University of Queensland)

  • David Adamson

    (Risk and Sustainable Management Group, University of Queensland)

  • John Quiggin

    (Risk & Sustainable Management Group, School of Economics, University of Queensland)

Abstract
Large scale forest plantations in the Murray-Darling Basin may be embraced as a carbon sequestration mechanism under a Carbon Pollution Reduction Scheme. However, increased tree plantation will be associated with reduced inflows to river systems because of increased transpiration, interception and evaporation. Therefore, an unregulated change in land management is most likely to have a dramatic impact on the water availability. This will exacerbate the impacts of climate change projected in the Garnaut Review. This paper examines the implications of unrestricted changes in land use. These results should suggest the true costs to society from carbon sequestration by determining the tradeoffs between timber production and agricultural products.

Suggested Citation

  • Peggy Schrobback & David Adamson & John Quiggin, 2009. "Turning Water into Carbon: Carbon sequestration vs. water flow in the Murray-Darling Basin," Murray-Darling Program Working Papers WP2M09, Risk and Sustainable Management Group, University of Queensland.
  • Handle: RePEc:rsm:murray:m09_2
    as

    Download full text from publisher

    File URL: http://www.uq.edu.au/rsmg/WP/WPM09_02.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Adamson & Thilak Mallawaarachchi & John Quiggin, 2006. "State-contingent modelling of the Murray Darling Basin: implications for the design of property rights," Murray-Darling Program Working Papers WP2M06, Risk and Sustainable Management Group, University of Queensland.
    2. Adamson, David & Mallawaarachchi, Thilak & Quiggin, John C., 2007. "Water use and salinity in the Murray–Darling Basin: A state-contingent model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 1-19.
    3. Young, Michael D. & McColl, James C., 2009. "Double trouble: the importance of accounting for and defining water entitlements consistent with hydrological realities," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(1), pages 1-17.
    4. Garnaut,Ross, 2008. "The Garnaut Climate Change Review," Cambridge Books, Cambridge University Press, number 9780521744447, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nordblom, T.L. & Christy, B.P. & Finlayson, J.D. & Roberts, A.M. & Kelly, J.A., 2010. "Least cost land-use changes for targeted catchment salt load and water yield impacts in south eastern Australia," Agricultural Water Management, Elsevier, vol. 97(6), pages 811-823, June.
    2. Nordblom, Tom & Finlayson, John D. & Hume, Iain H. & Kelly, Jason A., 2009. "Supply and Demand for Water use by New Forest Plantations: a market to balance increasing upstream water use with downstream community, industry and environmental use?," Research Reports 280785, New South Wales Department of Primary Industries Research Economists.
    3. Claire Settre & Jeff Connor & Sarah Ann Wheeler, 2017. "Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-35, July.
    4. P. Polglase & A. Reeson & C. Hawkins & K. Paul & A. Siggins & J. Turner & D. Crawford & T. Jovanovic & T. Hobbs & K. Opie & J. Carwardine & A. Almeida, 2013. "Potential for forest carbon plantings to offset greenhouse emissions in Australia: economics and constraints to implementation," Climatic Change, Springer, vol. 121(2), pages 161-175, November.
    5. Nordblom, Thomas L. & Finlayson, John D. & Hume, Iain H., 2012. "Upstream demand for water use by new tree plantations imposes externalities on downstream irrigated agriculture and wetlands," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(4), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peggy Schrobback & David Adamson & John Quiggin, 2011. "Turning Water into Carbon: Carbon Sequestration and Water Flow in the Murray–Darling Basin," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(1), pages 23-45, May.
    2. Claire Settre & Jeff Connor & Sarah Ann Wheeler, 2017. "Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-35, July.
    3. Adamson, David & Mallawaarachchi, Thilak & Quiggin, John C., 2007. "Water use and salinity in the Murray–Darling Basin: A state-contingent model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 1-19.
    4. Adamson, David & Loch, Adam, 2014. "Possible negative feedbacks from ‘gold-plating’ irrigation infrastructure," Agricultural Water Management, Elsevier, vol. 145(C), pages 134-144.
    5. Adamson, David, 2010. "Climate change, Irrigation and Pests: Examining Heliothis in the Murray Darling Basin," Risk and Sustainable Management Group Working Papers 149879, University of Queensland, School of Economics.
    6. Nordblom, Tom & Finlayson, John D. & Hume, Iain H. & Kelly, Jason A., 2009. "Supply and Demand for Water use by New Forest Plantations: a market to balance increasing upstream water use with downstream community, industry and environmental use?," Research Reports 280785, New South Wales Department of Primary Industries Research Economists.
    7. Productivity Commission, 2009. "Government Drought Support," Inquiry Reports, Productivity Commission, Government of Australia, number 46.
    8. Adamson, David, 2012. "The 2011 Basin Plan, Climate Change and the Buy-Back," Risk and Sustainable Management Group Working Papers 149884, University of Queensland, School of Economics.
    9. Mallawaarachchi, Thilak & Auricht, Christopher & Loch, Adam & Adamson, David & Quiggin, John, 2020. "Water allocation in Australia’s Murray–Darling Basin: Managing change under heightened uncertainty," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 345-369.
    10. Nordblom, T.L. & Christy, B.P. & Finlayson, J.D. & Roberts, A.M. & Kelly, J.A., 2010. "Least cost land-use changes for targeted catchment salt load and water yield impacts in south eastern Australia," Agricultural Water Management, Elsevier, vol. 97(6), pages 811-823, June.
    11. Crossman, Neville D. & Connor, Jeffrey D. & Bryan, Brett A. & Summers, David M. & Ginnivan, John, 2010. "Reconfiguring an irrigation landscape to improve provision of ecosystem services," Ecological Economics, Elsevier, vol. 69(5), pages 1031-1042, March.
    12. Kym Anderson & Signe Nelgen & Ernesto Valenzuela & Glyn Wittwer, 2009. "Economic contributions and characteristics of grapes and wine in AustraliaÂ’s wine regions," Centre for International Economic Studies Working Papers 2009-01, University of Adelaide, Centre for International Economic Studies.
    13. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    14. Kaidonis, Mary & Moerman, Lee & Rudkin, Kathy, 2009. "Paradigm, paradox, paralysis: An epistemic process," Accounting forum, Elsevier, vol. 33(4), pages 285-289.
    15. Nigel Martin & John Rice, 2010. "Analysing emission intensive firms as regulatory stakeholders: a role for adaptable business strategy," Business Strategy and the Environment, Wiley Blackwell, vol. 19(1), pages 64-75, January.
    16. Sheng, Yu & Xu, Xinpeng, 2019. "The productivity impact of climate change: Evidence from Australia's Millennium drought," Economic Modelling, Elsevier, vol. 76(C), pages 182-191.
    17. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    18. Giorel Curran, 2011. "Modernising Climate Policy in Australia: Climate Narratives and the Undoing of a Prime Minister," Environment and Planning C, , vol. 29(6), pages 1004-1017, December.
    19. Raymond Markey & Joseph McIvor & Martin O’Brien & Chris F Wright, 2021. "Triggering business responses to climate policy in Australia," Australian Journal of Management, Australian School of Business, vol. 46(2), pages 248-271, May.
    20. Nelson, Tim & Pascoe, Owen & Calais, Prabpreet & Mitchell, Lily & McNeill, Judith, 2019. "Efficient integration of climate and energy policy in Australia’s National Electricity Market," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 178-193.

    More about this item

    Keywords

    Murray Darling Basin; water; environmental flows;
    All these keywords.

    JEL classification:

    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsm:murray:m09_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Adamson (email available below). General contact details of provider: https://edirc.repec.org/data/rsmuqau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.