[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201105.html
   My bibliography  Save this paper

South Africa's Electricity Consumption: A Sectoral Decomposition Analysis

Author

Listed:
  • Roula Inglesi-Lotz

    (Department of Economics, University of Pretoria)

  • James Blignaut

    (Department of Economics, University of Pretoria)

Abstract
South Africa's electricity consumption has increased sharply since the early 1990s. Here we conduct a sectoral decomposition analysis of the electricity consumption for the period 1993 to 2006, to determine the main drivers of this increase. The results show that the increase was due mainly to output- or production-related factors, with structural changes playing a secondary role. While there is some evidence of efficiency improvements, indicated here as a slowdown in the rate of increase in electricity intensity, it was not nearly sufficient to onset the combined production and structural effects that propelled electricity consumption higher.

Suggested Citation

  • Roula Inglesi-Lotz & James Blignaut, 2011. "South Africa's Electricity Consumption: A Sectoral Decomposition Analysis," Working Papers 201105, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201105
    as

    Download full text from publisher

    File URL: http://www.up.ac.za/media/shared/61/WP/wp203.zp39415.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Liddle, Brantley, 2009. "Electricity intensity convergence in IEA/OECD countries: Aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 37(4), pages 1470-1478, April.
    3. Choi, Ki-Hong & Ang, B. W., 2003. "Decomposition of aggregate energy intensity changes in two measures: ratio and difference," Energy Economics, Elsevier, vol. 25(6), pages 615-624, November.
    4. Ang, B.W. & Mu, A.R. & Zhou, P., 2010. "Accounting frameworks for tracking energy efficiency trends," Energy Economics, Elsevier, vol. 32(5), pages 1209-1219, September.
    5. Chung, Whan-Sam & Tohno, Susumu & Shim, Sang Yul, 2009. "An estimation of energy and GHG emission intensity caused by energy consumption in Korea: An energy IO approach," Applied Energy, Elsevier, vol. 86(10), pages 1902-1914, October.
    6. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    7. Ozawa, Leticia & Sheinbaum, Claudia & Martin, Nathan & Worrell, Ernst & Price, Lynn, 2002. "Energy use and CO2 emissions in Mexico's iron and steel industry," Energy, Elsevier, vol. 27(3), pages 225-239.
    8. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    9. Odhiambo, Nicholas M., 2009. "Electricity consumption and economic growth in South Africa: A trivariate causality test," Energy Economics, Elsevier, vol. 31(5), pages 635-640, September.
    10. Weber, Christopher L., 2009. "Measuring structural change and energy use: Decomposition of the US economy from 1997 to 2002," Energy Policy, Elsevier, vol. 37(4), pages 1561-1570, April.
    11. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
    12. Ziramba, Emmanuel, 2008. "The demand for residential electricity in South Africa," Energy Policy, Elsevier, vol. 36(9), pages 3460-3466, September.
    13. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    14. Gilbert E. Metcalf, 2008. "An Empirical Analysis of Energy Intensity and Its Determinants at the State Level," The Energy Journal, , vol. 29(3), pages 1-26, July.
    15. Apergis, Nicholas & Payne, James E., 2011. "The renewable energy consumption-growth nexus in Central America," Applied Energy, Elsevier, vol. 88(1), pages 343-347, January.
    16. Narayan, Paresh Kumar & Wong, Philip, 2009. "A panel data analysis of the determinants of oil consumption: The case of Australia," Applied Energy, Elsevier, vol. 86(12), pages 2771-2775, December.
    17. Andrade Silva, Fabiano Ionta & Guerra, Sinclair Mallet Guy, 2009. "Analysis of the energy intensity evolution in the Brazilian industrial sector--1995 to 2005," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2589-2596, December.
    18. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    19. Wachsmann, Ulrike & Wood, Richard & Lenzen, Manfred & Schaeffer, Roberto, 2009. "Structural decomposition of energy use in Brazil from 1970 to 1996," Applied Energy, Elsevier, vol. 86(4), pages 578-587, April.
    20. Harald Winkler & Meagan Jooste & Andrew Marquard, 2010. "Structuring approaches to pricing carbon in energy- and trade-intensive sectors in South Africa," Climate Policy, Taylor & Francis Journals, vol. 10(5), pages 527-542, September.
    21. Amusa, Hammed & Amusa, Kafayat & Mabugu, Ramos, 2009. "Aggregate demand for electricity in South Africa: An analysis using the bounds testing approach to cointegration," Energy Policy, Elsevier, vol. 37(10), pages 4167-4175, October.
    22. Inglesi, Roula, 2010. "Aggregate electricity demand in South Africa: Conditional forecasts to 2030," Applied Energy, Elsevier, vol. 87(1), pages 197-204, January.
    23. Mendiluce, María & Pérez-Arriaga, Ignacio & Ocaña, Carlos, 2010. "Comparison of the evolution of energy intensity in Spain and in the EU15. Why is Spain different?," Energy Policy, Elsevier, vol. 38(1), pages 639-645, January.
    24. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    25. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    26. AkbostancI, Elif & Tunç, Gül Ipek & Türüt-AsIk, Serap, 2011. "CO2 emissions of Turkish manufacturing industry: A decomposition analysis," Applied Energy, Elsevier, vol. 88(6), pages 2273-2278, June.
    27. Wolde-Rufael, Yemane, 2010. "Coal consumption and economic growth revisited," Applied Energy, Elsevier, vol. 87(1), pages 160-167, January.
    28. Tan, Raymond R., 2011. "A general source-sink model with inoperability constraints for robust energy sector planning," Applied Energy, Elsevier, vol. 88(11), pages 3759-3764.
    29. Korppoo, Anna & Luukkanen, Jyrki & Vehmas, Jarmo & Kinnunen, Miia, 2008. "What goes down must come up? Trends of industrial electricity use in the North-West of Russia," Energy Policy, Elsevier, vol. 36(9), pages 3588-3597, September.
    30. Sinton, Jonathan E. & Levine, Mark D., 1994. "Changing energy intensity in Chinese industry : The relatively importance of structural shift and intensity change," Energy Policy, Elsevier, vol. 22(3), pages 239-255, March.
    31. Zhao, Xiaoli & Ma, Chunbo & Hong, Dongyue, 2010. "Why did China's energy intensity increase during 1998-2006: Decomposition and policy analysis," Energy Policy, Elsevier, vol. 38(3), pages 1379-1388, March.
    32. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    33. Markandya, Anil & Pedroso-Galinato, Suzette & Streimikiene, Dalia, 2006. "Energy intensity in transition economies: Is there convergence towards the EU average?," Energy Economics, Elsevier, vol. 28(1), pages 121-145, January.
    34. Schipper, Lee & Ting, Michael & Khrushch, Marta & Golove, William, 1997. "The evolution of carbon dioxide emissions from energy use in industrialized countries: an end-use analysis," Energy Policy, Elsevier, vol. 25(7-9), pages 651-672.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inglesi-Lotz, R. & Pouris, A., 2012. "Energy efficiency in South Africa: A decomposition exercise," Energy, Elsevier, vol. 42(1), pages 113-120.
    2. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
    3. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    4. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    5. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    6. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    7. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    8. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    9. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    10. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    11. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    12. Ma, Chunbo, 2010. "Account for sector heterogeneity in China's energy consumption: Sector price indices vs. GDP deflator," Energy Economics, Elsevier, vol. 32(1), pages 24-29, January.
    13. Roula Inglesi-Lotz, 2017. "Decomposing the South African COâ‚‚ emissions within a BRICS countries context: The energy rebound hypothesis," Working Papers 690, Economic Research Southern Africa.
    14. Choi, Ki-Hong & Ang, B.W., 2012. "Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis," Energy Economics, Elsevier, vol. 34(1), pages 171-176.
    15. González, Domingo & Martínez, Manuel, 2012. "Changes in CO2 emission intensities in the Mexican industry," Energy Policy, Elsevier, vol. 51(C), pages 149-163.
    16. Inglesi-Lotz, R. & Blignaut, J.N., 2012. "Electricity intensities of the OECD and South Africa: A comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4491-4499.
    17. Peter Mulder, 2015. "International Specialization, Structural Change and the Evolution of Manufacturing Energy Intensity in OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    18. Inglesi-Lotz, Roula, 2018. "Decomposing the South African CO2 emissions within a BRICS countries context: Signalling potential energy rebound effects," Energy, Elsevier, vol. 147(C), pages 648-654.
    19. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    20. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.