[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/pen/papers/05-008.html
   My bibliography  Save this paper

Modeling Bond Yields in Finance and Macroeconomics

Author

Listed:
  • Francis X. Diebold

    (Department of Economics, University of Pennsylvania)

  • Monika Piazzesi

    (Graduate School of Business, University of Chicago)

  • Glenn D. Rudebusch

    (Economic Research, Federal Reserve Bank of San Francisco)

Abstract
From a macroeconomic perspective, the short-term interest rate is a policy instrument under the direct control of the central bank. From a finance perspective, long rates are risk-adjusted averages of expected future short rates. Thus, as illustrated by much recent research, a joint macro-finance modeling strategy will provide the most comprehensive understanding of the term structure of interest rates. We discuss various questions that arise in this research, and we also present a new examination of the relationship between two prominent dynamic, latent factor models in this literature: the Nelson-Siegel and affine no-arbitrage term structure models.

Suggested Citation

  • Francis X. Diebold & Monika Piazzesi & Glenn D. Rudebusch, 2005. "Modeling Bond Yields in Finance and Macroeconomics," PIER Working Paper Archive 05-008, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  • Handle: RePEc:pen:papers:05-008
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/sites/default/files/filevault/working-papers/05-008.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Glenn D. Rudebusch & Tao Wu, 2008. "A Macro‐Finance Model of the Term Structure, Monetary Policy and the Economy," Economic Journal, Royal Economic Society, vol. 118(530), pages 906-926, July.
    2. Andrew Ang & Sen Dong & Monika Piazzesi, 2005. "No-arbitrage Taylor rules," Proceedings, Federal Reserve Bank of San Francisco.
    3. Monika Piazzesi, 2005. "Bond Yields and the Federal Reserve," Journal of Political Economy, University of Chicago Press, vol. 113(2), pages 311-344, April.
    4. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
    5. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    6. Glenn D. Rudebusch & Tao Wu, 2007. "Accounting for a Shift in Term Structure Behavior with No‐Arbitrage and Macro‐Finance Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(2‐3), pages 395-422, March.
    7. Tao Wu & Glenn Rudebusch, 2003. "Macroeconomics and the Yield Curve," Computing in Economics and Finance 2003 206, Society for Computational Economics.
    8. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    9. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakas, Vicente, 2011. "Theory and empirics of an affine term structure model applied to European data," MPRA Paper 36029, University Library of Munich, Germany.
    2. Tu, Anthony H. & Chen, Cathy Yi-Hsuan, 2018. "A factor-based approach of bond portfolio value-at-risk: The informational roles of macroeconomic and financial stress factors," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 243-268.
    3. Glenn D. Rudebusch, 2010. "Macro‐Finance Models Of Interest Rates And The Economy," Manchester School, University of Manchester, vol. 78(s1), pages 25-52, September.
    4. Tu, Anthony H. & Chen, Cathy Yi-Hsuan, 2016. "What derives the bond portfolio value-at-risk: Information roles of macroeconomic and financial stress factors," SFB 649 Discussion Papers 2016-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. repec:hum:wpaper:sfb649dp2016-006 is not listed on IDEAS
    6. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, vol. 6(3), pages 1-27, August.
    7. Andr? Kurmann & Christopher Otrok, 2013. "News Shocks and the Slope of the Term Structure of Interest Rates," American Economic Review, American Economic Association, vol. 103(6), pages 2612-2632, October.
    8. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    9. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    10. Laurini, Márcio P. & Caldeira, João F., 2016. "A macro-finance term structure model with multivariate stochastic volatility," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 68-90.
    11. Moench, Emanuel, 2008. "Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach," Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.
    12. Zeno Rotondi, 2006. "The Macroeconomy and the Yield Curve: A Review of the Literature with Some New Evidence," Giornale degli Economisti, GDE (Giornale degli Economisti e Annali di Economia), Bocconi University, vol. 65(2), pages 193-224, November.
    13. Guidolin, Massimo & Timmermann, Allan, 2009. "Forecasts of US short-term interest rates: A flexible forecast combination approach," Journal of Econometrics, Elsevier, vol. 150(2), pages 297-311, June.
    14. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Switching Nelson-Siegel Models," BAFFI CAREFIN Working Papers 19106, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    15. Michiel De Pooter & Francesco Ravazzolo & Dick van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," International Finance Discussion Papers 993, Board of Governors of the Federal Reserve System (U.S.).
    16. De Pooter, Michiel & Ravazzolo, Francesco & van Dijk, Dick, 2006. "Predicting the term structure of interest rates incorporating parameter uncertainty, model uncertainty and macroeconomic information," MPRA Paper 2512, University Library of Munich, Germany, revised 03 Mar 2007.
    17. Anastasios Demertzidis & Vahidin Jeleskovic, 2021. "Empirical Estimation of Intraday Yield Curves on the Italian Interbank Credit Market e-MID," JRFM, MDPI, vol. 14(5), pages 1-23, May.
    18. Lange, Ronald Henry, 2018. "The term structure of liquidity premia and the macroeconomy in Canada: A dynamic latent-factor approach," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 164-182.
    19. Márcio Laurini & João Frois Caldeira, 2012. "Some Comments on a Macro-Finance Model with Stochastic Volatility," IBMEC RJ Economics Discussion Papers 2012-04, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    20. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    21. Glenn D. Rudebusch & Eric T. Swanson & Tao Wu, 2006. "The Bond Yield "Conundrum" from a Macro-Finance Perspective," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 24(S1), pages 83-109, December.

    More about this item

    Keywords

    term structure; yield curve; Nelson-Siegel model; affine equilibrium model;
    All these keywords.

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates
    • E5 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:05-008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.