[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/20276.html
   My bibliography  Save this paper

Tractable and Consistent Random Graph Models

Author

Listed:
  • Arun G. Chandrasekhar
  • Matthew O. Jackson
Abstract
We define a general class of network formation models, Statistical Exponential Random Graph Models (SERGMs), that nest standard exponential random graph models (ERGMs) as a special case. We provide the first general results on when these models' (including ERGMs) parameters estimated from the observation of a single network are consistent (i.e., become accurate as the number of nodes grows). Next, addressing the problem that standard techniques of estimating ERGMs have been shown to have exponentially slow mixing times for many specifications, we show that by reformulating network formation as a distribution over the space of sufficient statistics instead of the space of networks, the size of the space of estimation can be greatly reduced, making estimation practical and easy. We also develop a related, but distinct, class of models that we call subgraph generation models (SUGMs) that are useful for modeling sparse networks and whose parameter estimates are also directly and easily estimable, consistent, and asymptotically normally distributed. Finally, we show how choice-based (strategic) network formation models can be written as SERGMs and SUGMs, and apply our models and techniques to network data from rural Indian villages.

Suggested Citation

  • Arun G. Chandrasekhar & Matthew O. Jackson, 2014. "Tractable and Consistent Random Graph Models," NBER Working Papers 20276, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:20276
    Note: DEV LS TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w20276.pdf
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • Z13 - Other Special Topics - - Cultural Economics - - - Economic Sociology; Economic Anthropology; Language; Social and Economic Stratification

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:20276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.