Threshold MIDAS Forecasting of Inflation Rate
Author
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Seo, Myung Hwan & Linton, Oliver, 2007.
"A smoothed least squares estimator for threshold regression models,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 704-735, December.
- Linton, Oliver & Seo, Myunghwan, 2005. "A smoothed least squares estimator for threshold regression models," LSE Research Online Documents on Economics 4434, London School of Economics and Political Science, LSE Library.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003.
"Do financial variables help forecasting inflation and real activity in the euro area?,"
Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
- Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario, 2002. "Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area?," CEPR Discussion Papers 3146, C.E.P.R. Discussion Papers.
- Marc Hallin & Mario Forni & Marco Lippi & Lucrezia Reichlin, 2003. "Do financial variables help forecasting inflation and real activity in the Euro area ?," ULB Institutional Repository 2013/2123, ULB -- Universite Libre de Bruxelles.
- Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
- Cologni, Alessandro & Manera, Matteo, 2008.
"Oil prices, inflation and interest rates in a structural cointegrated VAR model for the G-7 countries,"
Energy Economics, Elsevier, vol. 30(3), pages 856-888, May.
- Cologni, Alessandro & Manera, Matteo, 2005. "Oil Prices, Inflation and Interest Rates in a Structural Cointegrated VAR Model for the G-7 Countries," International Energy Markets Working Papers 12110, Fondazione Eni Enrico Mattei (FEEM).
- Matteo Manera & Alessandro Cologni, 2005. "Oil Prices, Inflation and Interest Rates in a Structural Cointegrated VAR Model for the G-7 Countries," Working Papers 2005.101, Fondazione Eni Enrico Mattei.
- Banerjee, Anindya & Marcellino, Massimiliano, 2006.
"Are there any reliable leading indicators for US inflation and GDP growth?,"
International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
- Anindya BANERJEE & Massimiliano MARCELLINO, 2002. "Are There Any Reliable Leading Indicators for US Inflation and GDP Growth?," Economics Working Papers ECO2002/21, European University Institute.
- Anindya Banerjee & Massimiliano Marcellino, 2003. "Are There Any Reliable Leading Indicators for U.S. Inflation and GDP Growth?," Working Papers 236, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
- Hwee Kwan Chow & Yijie Fei & Daniel Han, 2023. "Forecasting GDP with many predictors in a small open economy: forecast or information pooling?," Empirical Economics, Springer, vol. 65(2), pages 805-829, August.
- Franky Juliano Galeano-Ramírez & Nicolás Martínez-Cortés & Carlos D. Rojas-Martínez, 2021. "Nowcasting Colombian Economic Activity: DFM and Factor-MIDAS approaches," Borradores de Economia 1168, Banco de la Republica de Colombia.
- Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022.
"The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting,"
Working Papers
2232, Banco de España.
- Diakonova, M. & Molina, L. & Mueller, H. & Pérez, J. J. & Rauh, C., 2024. "The Information Content of Conflict, Social Unrest and Policy Uncertainty Measures for Macroeconomic Forecasting," Cambridge Working Papers in Economics 2418, Faculty of Economics, University of Cambridge.
- Diakonova, M. & Molina, L. & Mueller, H. & Pérez, J. J. & Rauh, C., 2024. "The Information Content of Conflict, Social Unrest and Policy Uncertainty Measures for Macroeconomic Forecasting," Janeway Institute Working Papers 2413, Faculty of Economics, University of Cambridge.
- Christina Ziegler, 2009. "Testing Predicitive Ability of Business Cycle Indicators for the Euro Area," ifo Working Paper Series 69, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Marie Bessec, 2019.
"Revisiting the transitional dynamics of business cycle phases with mixed-frequency data,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
- Marie Bessec, 2016. "Revisiting the transitional dynamics of business-cycle phases with mixed frequency data," Working Papers hal-01358595, HAL.
- Marie Bessec, 2019. "Revisiting the transitional dynamics of business-cycle phases with mixed-frequency data," Post-Print hal-02181552, HAL.
- Drechsel, Katja & Scheufele, Rolf, 2010. "Should We Trust in Leading Indicators? Evidence from the Recent Recession," IWH Discussion Papers 10/2010, Halle Institute for Economic Research (IWH).
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009.
"Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP,"
Economics Working Papers
ECO2009/13, European University Institute.
- Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "Pooling versus model selection for nowcasting with many predictors: an application to German GDP," Discussion Paper Series 1: Economic Studies 2009,03, Deutsche Bundesbank.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "Pooling versus model selection for nowcasting with many predictors: An application to German GDP," CEPR Discussion Papers 7197, C.E.P.R. Discussion Papers.
- Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
- Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
- Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
- Dario Buono & George Kapetanios & Massimiliano Marcellino & Gianluigi Mazzi & Fotis Papailias, 2018. "Big Data Econometrics: Now Casting and Early Estimates," BAFFI CAREFIN Working Papers 1882, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- Goldmann, Leonie & Crook, Jonathan & Calabrese, Raffaella, 2024. "A new ordinal mixed-data sampling model with an application to corporate credit rating levels," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1111-1126.
- Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
- Lahiri, Kajal & Monokroussos, George, 2013.
"Nowcasting US GDP: The role of ISM business surveys,"
International Journal of Forecasting, Elsevier, vol. 29(4), pages 644-658.
- Kajal Lahiri & George Monokroussos, 2011. "Nowcasting US GDP: The role of ISM Business Surveys," Discussion Papers 11-01, University at Albany, SUNY, Department of Economics.
- Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012.
"Nowcasting German GDP: A comparison of bridge and factor models,"
Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
- Antipa, P. & Barhoumi, K. & Brunhes-Lesage, V. & Darné, O., 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Working papers 401, Banque de France.
- In Choi & Dukpa Kim & Yun Jung Kim & Noh‐Sun Kwark, 2018.
"A multilevel factor model: Identification, asymptotic theory and applications,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 355-377, April.
- In Choi & Dukpa Kim & Yun Jung Kim & Noh-Sun Kwark, 2016. "A Multilevel Factor Model: Identification, Asymptotic Theory and Applications," Working Papers 1609, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
- Stavros Degiannakis, 2023.
"The D-model for GDP nowcasting,"
Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
- Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Working Papers 317, Bank of Greece.
More about this item
Keywords
Forecasting; High-frequency index; Mixed data sampling; Superiority predictive ability test; Threshold regression;All these keywords.
JEL classification:
- C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2024-03-04 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:liv:livedp:202314. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rachel Slater (email available below). General contact details of provider: https://edirc.repec.org/data/mslivuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.