Generative modeling for time series via Schrödinger bridge
Author
Suggested Citation
Note: View the original document on HAL open archive server: https://hal.science/hal-04063041v1
Download full text from publisher
References listed on IDEAS
- Jan Gairing & Peter Imkeller & Radomyra Shevchenko & Ciprian Tudor, 2020. "Hurst Index Estimation in Stochastic Differential Equations Driven by Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1691-1714, September.
- Pierre Henry-Labordere, 2019. "From (Martingale) Schrodinger bridges to a new class of Stochastic Volatility Models," Working Papers hal-02090807, HAL.
- Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
- Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
- Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
- Pierre Henry-Labordere, 2019. "From (Martingale) Schrodinger bridges to a new class of Stochastic Volatility Models," Papers 1904.04554, arXiv.org.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Francesca Biagini & Lukas Gonon & Niklas Walter, 2024. "Universal randomised signatures for generative time series modelling," Papers 2406.10214, arXiv.org, revised Sep 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohamed Hamdouche & Pierre Henry-Labordere & Huy^en Pham, 2023. "Generative modeling for time series via Schr{\"o}dinger bridge," Papers 2304.05093, arXiv.org.
- Alexandre Miot, 2020. "Adversarial trading," Papers 2101.03128, arXiv.org.
- Giacomo Giorgio & Barbara Pacchiarotti & Paolo Pigato, 2023.
"Short-Time Asymptotics for Non-Self-Similar Stochastic Volatility Models,"
Applied Mathematical Finance, Taylor & Francis Journals, vol. 30(3), pages 123-152, May.
- Giacomo Giorgio & Barbara Pacchiarotti & Paolo Pigato, 2022. "Short-time asymptotics for non self-similar stochastic volatility models," Papers 2204.10103, arXiv.org, revised Nov 2023.
- Francesca Biagini & Lukas Gonon & Niklas Walter, 2024. "Universal randomised signatures for generative time series modelling," Papers 2406.10214, arXiv.org, revised Sep 2024.
- Nelson Vadori, 2022. "Calibration of Derivative Pricing Models: a Multi-Agent Reinforcement Learning Perspective," Papers 2203.06865, arXiv.org, revised Oct 2023.
- Chung I Lu & Julian Sester, 2024. "Generative model for financial time series trained with MMD using a signature kernel," Papers 2407.19848, arXiv.org, revised Jul 2024.
- Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
- Emiel Lemahieu & Kris Boudt & Maarten Wyns, 2023. "Generating drawdown-realistic financial price paths using path signatures," Papers 2309.04507, arXiv.org.
- Rama Cont & Mihai Cucuringu & Renyuan Xu & Chao Zhang, 2022. "Tail-GAN: Learning to Simulate Tail Risk Scenarios," Papers 2203.01664, arXiv.org, revised Mar 2023.
- Magnus Wiese & Phillip Murray & Ralf Korn, 2023. "Sig-Splines: universal approximation and convex calibration of time series generative models," Papers 2307.09767, arXiv.org.
- Chung I Lu, 2023. "Evaluation of Deep Reinforcement Learning Algorithms for Portfolio Optimisation," Papers 2307.07694, arXiv.org, revised Jul 2023.
- Christa Cuchiero & Guido Gazzani & Janka Moller & Sara Svaluto-Ferro, 2023. "Joint calibration to SPX and VIX options with signature-based models," Papers 2301.13235, arXiv.org, revised Jul 2024.
- Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
- Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
- Solveig Flaig & Gero Junike, 2022. "Scenario Generation for Market Risk Models Using Generative Neural Networks," Risks, MDPI, vol. 10(11), pages 1-28, October.
- Yongqi Sun & Jianhua Li & Yang Yu & Weijun Zeng, 2022. "Ecological Assessment Based on Remote Sensing Ecological Index: A Case Study of the “Three-Lake” Basin in Yuxi City, Yunnan Province, China," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
- Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
- Myladis R. Cogollo & Gilberto González-Parra & Abraham J. Arenas, 2021. "Modeling and Forecasting Cases of RSV Using Artificial Neural Networks," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
- Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
- Andrea Coletta & Joseph Jerome & Rahul Savani & Svitlana Vyetrenko, 2023. "Conditional Generators for Limit Order Book Environments: Explainability, Challenges, and Robustness," Papers 2306.12806, arXiv.org.
More about this item
Keywords
generative models; time series; Schrödinger bridge; kernel estimation; deep hedging;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-05-29 (Big Data)
- NEP-DES-2023-05-29 (Economic Design)
- NEP-ECM-2023-05-29 (Econometrics)
- NEP-ETS-2023-05-29 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04063041. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.