[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00939253.html
   My bibliography  Save this paper

European energy efficiency and decarbonization strategies beyond 2030 : A sectoral multi-model decomposition

Author

Listed:
  • Hannah Förster

    (Oko-Institut e.V.)

  • Katja Schumacher

    (Oko-Institut e.V.)

  • Enrica de Cian

    (FEEM - Fondazione Eni Enrico Mattei - Fondazione Eni Enrico Mattei)

  • Michael Hübler

    (Centre for European Economic Research (Mannheim, Germany) - Zentrum für Europäische Wirtschaftsforschung (ZEW) - Universität Mannheim)

  • Ilkka Keppo

    (UCL Energy Institute - UCL - University College of London [London])

  • Silvana Mima

    (équipe EDDEN - PACTE - Pacte, Laboratoire de sciences sociales - UPMF - Université Pierre Mendès France - Grenoble 2 - UJF - Université Joseph Fourier - Grenoble 1 - IEPG - Sciences Po Grenoble - Institut d'études politiques de Grenoble - CNRS - Centre National de la Recherche Scientifique)

  • Ronald D. Sands

    (Economic Research Service - US Departement of Agriculture)

Abstract
Energy efficiency and decarbonization are important elements of climate change mitigation. We draw on European mitigation scenarios from the EMF28 modeling exercise to decompose economy-wide and sectoral emissions into their main components. We utilize the Logarithmic Mean Divisia Index (LMDI) to gain insights into five effects : affluence, energy intensity, carbon intensity, conversion efficiency, and structural change. Economy-wide analysis suggests that energy efficiency improvements (including end-use efficiency of production and structural change of the economy) determine emission reductions short to medium term while decarbonization becomes more important in the long term. Sectoral analysis suggests that electricity generation holds the largest potential for decarbonization. Mitigation in the transport and energy-intensive sectors is limited by technology availability, forcing output and energy inputs to decline to meet the given mitigation pathways. We conclude that energy efficiency improvements could bridge the time until carbon-free technologies mature, while their quick development remains essential.

Suggested Citation

  • Hannah Förster & Katja Schumacher & Enrica de Cian & Michael Hübler & Ilkka Keppo & Silvana Mima & Ronald D. Sands, 2013. "European energy efficiency and decarbonization strategies beyond 2030 : A sectoral multi-model decomposition," Post-Print halshs-00939253, HAL.
  • Handle: RePEc:hal:journl:halshs-00939253
    DOI: 10.1142/S2010007813400058
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00939253v1
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00939253v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1142/S2010007813400058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    3. Paltsev, Sergey & Jacoby, Henry D. & Reilly, John M. & Ejaz, Qudsia J. & Morris, Jennifer & O'Sullivan, Francis & Rausch, Sebastian & Winchester, Niven & Kragha, Oghenerume, 2011. "The future of U.S. natural gas production, use, and trade," Energy Policy, Elsevier, vol. 39(9), pages 5309-5321, September.
    4. Brigitte Knopf & Yen-Heng Henry Chen & Enrica De Cian & Hannah Förster & Amit Kanudia & Ioanna Karkatsouli & Ilkka Keppo & Tiina Koljonen & Katja Schumacher & Detlef P. Van Vuuren, 2013. "Beyond 2020 — Strategies And Costs For Transforming The European Energy System," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-38.
    5. Hübler, Michael & Löschel, Andreas, 2013. "The EU Decarbonisation Roadmap 2050—What way to walk?," Energy Policy, Elsevier, vol. 55(C), pages 190-207.
    6. Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
    7. Koljonen, Tiina & Lehtilä, Antti, 2012. "The impact of residential, commercial, and transport energy demand uncertainties in Asia on climate change mitigation," Energy Economics, Elsevier, vol. 34(S3), pages 410-420.
    8. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    9. Shrestha, Ram M. & Anandarajah, Gabrial & Liyanage, Migara H., 2009. "Factors affecting CO2 emission from the power sector of selected countries in Asia and the Pacific," Energy Policy, Elsevier, vol. 37(6), pages 2375-2384, June.
    10. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    11. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    12. Steenhof, Paul A., 2007. "Decomposition for emission baseline setting in China's electricity sector," Energy Policy, Elsevier, vol. 35(1), pages 280-294, January.
    13. Criqui, Patrick & Mima, Silvana, 2012. "European climate—energy security nexus: A model based scenario analysis," Energy Policy, Elsevier, vol. 41(C), pages 827-842.
    14. Böhringer, Christoph & Lange, Andreas, 2003. "Efficiency, Compensation, and Discrimination: What is at Stake When Implementing the EU Emissions Trading Scheme?," ZEW Discussion Papers 03-73, ZEW - Leibniz Centre for European Economic Research.
    15. Enrica Cian & Valentina Bosetti & Massimo Tavoni, 2012. "Technology innovation and diffusion in “less than ideal” climate policies: An assessment with the WITCH model," Climatic Change, Springer, vol. 114(1), pages 121-143, September.
    16. Diakoulaki, D. & Mavrotas, G. & Orkopoulos, D. & Papayannakis, L., 2006. "A bottom-up decomposition analysis of energy-related CO2 emissions in Greece," Energy, Elsevier, vol. 31(14), pages 2638-2651.
    17. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    18. Xu, Jin-Hua & Fleiter, Tobias & Eichhammer, Wolfgang & Fan, Ying, 2012. "Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis," Energy Policy, Elsevier, vol. 50(C), pages 821-832.
    19. Ronald Sands & Hannah Förster & Carol Jones & Katja Schumacher, 2014. "Bio-electricity and land use in the Future Agricultural Resources Model (FARM)," Climatic Change, Springer, vol. 123(3), pages 719-730, April.
    20. Liaskas, K. & Mavrotas, G. & Mandaraka, M. & Diakoulaki, D., 2000. "Decomposition of industrial CO2 emissions:: The case of European Union," Energy Economics, Elsevier, vol. 22(4), pages 383-394, August.
    21. Kesicki, Fabian & Anandarajah, Gabrial, 2011. "The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis," Energy Policy, Elsevier, vol. 39(11), pages 7224-7233.
    22. Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertra, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    23. Zhang, Ming & Liu, Xiao & Wang, Wenwen & Zhou, Min, 2013. "Decomposition analysis of CO2 emissions from electricity generation in China," Energy Policy, Elsevier, vol. 52(C), pages 159-165.
    24. Fisher-Vanden, Karen & Schu, Kathryn & Sue Wing, Ian & Calvin, Katherine, 2012. "Decomposing the impact of alternative technology sets on future carbon emissions growth," Energy Economics, Elsevier, vol. 34(S3), pages 359-365.
    25. Blanford, Geoffrey J. & Rose, Steven K. & Tavoni, Massimo, 2012. "Baseline projections of energy and emissions in Asia," Energy Economics, Elsevier, vol. 34(S3), pages 284-292.
    26. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    27. Patrick Criqui & Silvana Mima, 2012. "European climate -- energy security nexus: A model based scenario analysis," Post-Print halshs-00661043, HAL.
    28. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2010. "Monitoring energy efficiency trends in European industry: Which top-down method should be used?," Energy Policy, Elsevier, vol. 38(11), pages 6910-6918, November.
    29. Steckel, Jan Christoph & Jakob, Michael & Marschinski, Robert & Luderer, Gunnar, 2011. "From carbonization to decarbonization?--Past trends and future scenarios for China's CO2 emissions," Energy Policy, Elsevier, vol. 39(6), pages 3443-3455, June.
    30. Calvin, Katherine & Clarke, Leon & Krey, Volker & Blanford, Geoffrey & Jiang, Kejun & Kainuma, Mikiko & Kriegler, Elmar & Luderer, Gunnar & Shukla, P.R., 2012. "The role of Asia in mitigating climate change: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 251-260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrica De Cian & Ilkka Keppo & Johannes Bollen & Samuel Carrara & Hannah Förster & Michael Hübler & Amit Kanudia & Sergey Paltsev & Ronald D. Sands & Katja Schumacher, 2013. "European-Led Climate Policy Versus Global Mitigation Action: Implications On Trade, Technology, And Energy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-28.
    2. Spencer, Thomas & Pierfederici, Roberta & Sartor, Oliver & Berghmans, Nicolas & Samadi, Sascha & Fischedick, Manfred & Knoop, Katharina & Pye, Steve & Criqui, Patrick & Mathy, Sandrine & Capros, Pante, 2017. "Tracking sectoral progress in the deep decarbonisation of energy systems in Europe," Energy Policy, Elsevier, vol. 110(C), pages 509-517.
    3. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    4. Mathy, Sandrine & Menanteau, Philippe & Criqui, Patrick, 2018. "After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios," Ecological Economics, Elsevier, vol. 150(C), pages 273-289.
    5. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    6. Siala, Kais & Mier, Mathias & Schmidt, Lukas & Torralba-Díaz, Laura & Sheykhha, Siamak & Savvidis, Georgios, 2022. "Which model features matter? An experimental approach to evaluate power market modeling choices," Energy, Elsevier, vol. 245(C).
    7. Isik, Mine & Ari, Izzet & Sarica, Kemal, 2021. "Challenges in the CO2 emissions of the Turkish power sector: Evidence from a two-level decomposition approach," Utilities Policy, Elsevier, vol. 70(C).
    8. Liu, Bingquan & Shi, Junxue & Wang, Hui & Su, Xuelin & Zhou, Peng, 2019. "Driving factors of carbon emissions in China: A joint decomposition approach based on meta-frontier," Applied Energy, Elsevier, vol. 256(C).
    9. Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.
    10. Sandrine Mathy & P. Menanteau, 2020. "Mitigation strategies to enhance the ambition of the nationally determined contributions : an analysis of 4 European countries with the decarbonization wedges methodology," Post-Print hal-03190845, HAL.
    11. Baležentis, Tomas & Streimikiene, Dalia, 2017. "Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation," Applied Energy, Elsevier, vol. 185(P1), pages 862-871.
    12. Goh, Tian & Ang, B.W., 2018. "Quantifying CO2 emission reductions from renewables and nuclear energy – Some paradoxes," Energy Policy, Elsevier, vol. 113(C), pages 651-662.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brigitte Knopf & Yen-Heng Henry Chen & Enrica De Cian & Hannah Förster & Amit Kanudia & Ioanna Karkatsouli & Ilkka Keppo & Tiina Koljonen & Katja Schumacher & Detlef P. Van Vuuren, 2013. "Beyond 2020 — Strategies And Costs For Transforming The European Energy System," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-38.
    2. Enrica De Cian & Ilkka Keppo & Johannes Bollen & Samuel Carrara & Hannah Förster & Michael Hübler & Amit Kanudia & Sergey Paltsev & Ronald D. Sands & Katja Schumacher, 2013. "European-Led Climate Policy Versus Global Mitigation Action: Implications On Trade, Technology, And Energy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-28.
    3. Mathy, Sandrine & Menanteau, Philippe & Criqui, Patrick, 2018. "After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios," Ecological Economics, Elsevier, vol. 150(C), pages 273-289.
    4. Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.
    5. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    6. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    7. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    8. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    9. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    10. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    11. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    12. Ang, B.W. & Wang, H., 2015. "Index decomposition analysis with multidimensional and multilevel energy data," Energy Economics, Elsevier, vol. 51(C), pages 67-76.
    13. Yan, Qingyou & Zhang, Qian & Zou, Xin, 2016. "Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000–2020," Energy, Elsevier, vol. 112(C), pages 788-794.
    14. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    15. Vazquez, Luis & Luukkanen, Jyrki & Kaisti, Hanna & Käkönen, Mira & Majanne, Yrjö, 2015. "Decomposition analysis of Cuban energy production and use: Analysis of energy transformation for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 638-645.
    16. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    17. Xu, Jin-Hua & Fan, Ying & Yu, Song-Min, 2014. "Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation," Energy Economics, Elsevier, vol. 46(C), pages 348-359.
    18. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Combining physical and economic output data to analyse energy and CO2 emissions trends in industry," Energy Policy, Elsevier, vol. 49(C), pages 422-429.
    19. Shao, Shuai & Yang, Lili & Gan, Chunhui & Cao, Jianhua & Geng, Yong & Guan, Dabo, 2016. "Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 516-536.
    20. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.

    More about this item

    Keywords

    Decomposition analysis; decarbonization; model intercomparison;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00939253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.