[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/fip/fedbwp/04-9.html
   My bibliography  Save this paper

Implications of alternative operational risk modeling techniques

Author

Listed:
  • Patrick de Fontnouvelle
  • John S. Jordan
  • Eric Rosengren
Abstract
Quantification of operational risk has received increased attention with the inclusion of an explicit capital charge for operational risk under the new Basle proposal. The proposal provides significant flexibility for banks to use internal models to estimate their operational risk, and the associated capital needed for unexpected losses. Most banks have used variants of value at risk models that estimate frequency, severity, and loss distributions. This paper examines the empirical regularities in operational loss data. Using loss data from six large internationally active banking institutions, we find that loss data by event types are quite similar across institutions. Furthermore, our results are consistent with economic capital numbers disclosed by some large banks, and also with the results of studies modeling losses using publicly available ?external? loss data.

Suggested Citation

  • Patrick de Fontnouvelle & John S. Jordan & Eric Rosengren, 2004. "Implications of alternative operational risk modeling techniques," Working Papers 04-9, Federal Reserve Bank of Boston.
  • Handle: RePEc:fip:fedbwp:04-9
    as

    Download full text from publisher

    File URL: http://www.bostonfed.org/bankinfo/qau/research/papers/pderjj604.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    2. Beverly Hirtle, 2003. "What market risk capital reporting tells us about bank risk," Economic Policy Review, Federal Reserve Bank of New York, issue Sep, pages 37-54.
    3. M.J.B. Hall, 1996. "The amendment to the capital accord to incorporate market risk," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 49(197), pages 271-277.
    4. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Kapp & Marco Vega, 2014. "Real output costs of financial crises: A loss distribution approach," Cuadernos de Economía - Spanish Journal of Economics and Finance, Asociación Cuadernos de Economía, vol. 37(103), pages 13-28, Abril.
    2. Alina Mihaela Dima, 2009. "Operational Risk Assesement Tools for Quality Management in Banking Services," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 11(26), pages 364-372, June.
    3. Xiaoping Zhou & Rosella Giacometti & Frank J. Fabozzi & Ann H. Tucker, 2014. "Bayesian estimation of truncated data with applications to operational risk measurement," Quantitative Finance, Taylor & Francis Journals, vol. 14(5), pages 863-888, May.
    4. Paul Larsen, 2015. "Asyptotic Normality for Maximum Likelihood Estimation and Operational Risk," Papers 1508.02824, arXiv.org, revised Aug 2016.
    5. Tursunalieva, Ainura & Silvapulle, Param, 2016. "Nonparametric estimation of operational value-at-risk (OpVaR)," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 194-201.
    6. Albrecht, Peter & Schwake, Edmund & Winter, Peter, 2007. "Quantifizierung operationeller Risiken: Der Loss Distribution Approach," German Risk and Insurance Review (GRIR), University of Cologne, Department of Risk Management and Insurance, vol. 3(1), pages 1-45.
    7. Marco Flores, 2013. "Cuantificación del riesgo operacional mediante modelos de pérdidas agregadas y simulación de Monte Carlo," Analítika, Analítika - Revista de Análisis Estadístico/Journal of Statistical Analysis, vol. 5(1), pages 39-48, Junio.
    8. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    9. Enrique Jiménez-Rodríguez & José Manuel Feria-Domínguez & Alonso Sebastián-Lacave, 2018. "Assessing the Health-Care Risk: The Clinical-VaR, a Key Indicator for Sound Management," IJERPH, MDPI, vol. 15(4), pages 1-17, March.
    10. Sinemis Zengin & Serhat Yuksel, 2016. "A Comparison of the Views of Internal Controllers/Auditors and Branch/Call Center Personnel of the Banks for Operational Risk: A Case for Turkish Banking Sector," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 5(4), pages 10-29, July.
    11. Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
    12. Udo Milkau & Jürgen Bott, 2018. "Active Management of Operational Risk in the Regimes of the “Unknown”: What Can Machine Learning or Heuristics Deliver?," Risks, MDPI, vol. 6(2), pages 1-16, April.
    13. Andreas Jobst, 2007. "Consistent Quantitative Operational Risk Measurement and Regulation: Challenges of Model Specification, Data Collection and Loss Reporting," IMF Working Papers 2007/254, International Monetary Fund.
    14. S�verine Plunus & Georges Hübner & Jean-Philippe Peters, 2012. "Measuring operational risk in financial institutions," Applied Financial Economics, Taylor & Francis Journals, vol. 22(18), pages 1553-1569, September.
    15. Andreas Jobst, 2007. "Operational Risk: The Sting is Still in the Tail But the Poison Dependson the Dose," IMF Working Papers 2007/239, International Monetary Fund.
    16. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    17. Daniel Kapp & Marco Vega, 2012. "Real Output Costs of Financial Crises: A Loss Distribution Approach," Papers 1201.0967, arXiv.org, revised May 2012.
    18. Barbu Teodora Cristina & Olteanu (Puiu) Ana Cornelia & Radu Alina Nicoleta, 2008. "The necessity of operational risk management and quantification," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 3(1), pages 661-667, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    3. Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
    4. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    5. Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    6. Dufour, Jean-Marie & Kurz-Kim, Jeong-Ryeol, 2010. "Exact inference and optimal invariant estimation for the stability parameter of symmetric [alpha]-stable distributions," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 180-194, March.
    7. Jo~ao Nicolau & Paulo M. M. Rodrigues, 2024. "A simple but powerful tail index regression," Papers 2409.13531, arXiv.org.
    8. Bertail, Patrice & Haefke, Christian & Politis, D.N.Dimitris N. & White, Halbert, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Journal of Econometrics, Elsevier, vol. 120(2), pages 295-326, June.
    9. Ana-Maria Gavril, 2009. "Exchange Rate Risk: Heads or Tails," Advances in Economic and Financial Research - DOFIN Working Paper Series 35, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    10. David Anthoff & Richard S. J. Tol, 2022. "Testing the Dismal Theorem," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(5), pages 885-920.
    11. Pérignon, Christophe & Smith, Daniel R., 2010. "The level and quality of Value-at-Risk disclosure by commercial banks," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 362-377, February.
    12. Marc Saidenberg & Til Schuermann & May, "undated". "The New Basel Capital Accord and Questions for Research," Center for Financial Institutions Working Papers 03-14, Wharton School Center for Financial Institutions, University of Pennsylvania.
    13. Enrico Biffis & Erik Chavez, 2014. "Tail Risk in Commercial Property Insurance," Risks, MDPI, vol. 2(4), pages 1-18, September.
    14. Pérignon, Christophe & Smith, Daniel R., 2010. "Diversification and Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 55-66, January.
    15. Sun, Haoze & Jiang, Yuexiang, 2014. "Empirical likelihood based confidence intervals for the tail index when γ<−1/2," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 149-157.
    16. Philippe Jorion, 2007. "Bank Trading Risk and Systemic Risk," NBER Chapters, in: The Risks of Financial Institutions, pages 29-57, National Bureau of Economic Research, Inc.
    17. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    18. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    19. Andrea Sironi, 2001. "An Analysis of European Banks' SND Issues and its Implications for the Design of a Mandatory Subordinated Debt Policy," Journal of Financial Services Research, Springer;Western Finance Association, vol. 20(2), pages 233-266, October.
    20. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.

    More about this item

    Keywords

    Bank capital; Risk management; Basel capital accord;
    All these keywords.

    JEL classification:

    • G2 - Financial Economics - - Financial Institutions and Services

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedbwp:04-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Spozio (email available below). General contact details of provider: https://edirc.repec.org/data/frbbous.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.