[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/esj/esridp/292.html
   My bibliography  Save this paper

Measuring the Effects of Monetary Policy: A DSGE-DFM Approach

Author

Listed:
  • IIBOSHI Hirokuni
Abstract
I propose new method of measuring the effect of monetary policy on a large number of macroeconomic series by combining dynamic stochastic general equilibrium (DSGE) with a dynamic factor model (DFM) in a data-rich environment including a broad range of useful information for both central banks and the private sector. This method can resolve two problems inherent in the FAVAR approach proposed by Bernanke, Boivin and Eliasz (2005), yet can enjoy its benefits as well. Other positive aspects of this method are to split off components of model concepts (or common factors) and measurement errors from all observable variables, and to identify structural shocks, including monetary policy shocks, from the point of view of DSGE based on a microeconomic foundation with rational expectations. This new method calculates historical decomposition, which provides useful information for policy analysis for researchers and policymakers, as well as theoretically reasonable impulse response functions and variance decompositions for all observable variables of large panel data. Through this method I will provide empirical illustrations of 55 Japanese macroeconomic series during the late 1980s and the 1990s using a Smets-Wouter (2003, 2007) type medium size DSGE model.

Suggested Citation

  • IIBOSHI Hirokuni, 2012. "Measuring the Effects of Monetary Policy: A DSGE-DFM Approach," ESRI Discussion paper series 292, Economic and Social Research Institute (ESRI).
  • Handle: RePEc:esj:esridp:292
    as

    Download full text from publisher

    File URL: http://www.esri.go.jp/jp/archive/e_dis/e_dis292/e_dis292.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    2. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    3. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 665-696.
    4. Alexei Onatski & Noah Williams, 2010. "Empirical and policy performance of a forward-looking monetary model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 145-176.
    5. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148, Elsevier.
    6. Andrew T. Levin & Alexei Onatski & John Williams & Noah M. Williams, 2006. "Monetary Policy under Uncertainty in Micro-Founded Macroeconometric Models," NBER Chapters, in: NBER Macroeconomics Annual 2005, Volume 20, pages 229-312, National Bureau of Economic Research, Inc.
    7. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007, Elsevier.
    8. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    9. Yasuo Hirose, 2008. "Equilibrium Indeterminacy and Asset Price Fluctuation in Japan: A Bayesian Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(5), pages 967-999, August.
    10. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    11. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    12. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    13. Iiboshi, Hirokuni & Nishiyama, Shin-Ichi & Watanabe, Toshiaki, 2006. "An Estimated Dynamic Stochastic General Equilibrium Model of the Japanese Economy: A Bayesian Analysis," MPRA Paper 85702, University Library of Munich, Germany.
    14. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    15. Yasuo Hirose & Takushi Kurozumi, 2012. "Do Investment-Specific Technological Changes Matter For Business Fluctuations? Evidence From Japan," Pacific Economic Review, Wiley Blackwell, vol. 17(2), pages 208-230, May.
    16. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    17. Takuji Fueki & Ichiro Fukunaga & Hibiki Ichiue & Toyoichiro Shirota, 2016. "Measuring Potential Growth with an Estimated DSGE Model of Japan’s Economy," International Journal of Central Banking, International Journal of Central Banking, vol. 12(1), pages 1-32, March.
    18. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    19. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    20. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    21. Sohei Kaihatsu & Takushi Kurozumi, 2014. "Sources of Business Fluctuations: Financial or Technology Shocks?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(2), pages 224-242, April.
    22. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    23. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    24. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    25. Masahiko Shibamoto, 2007. "An Analysis Of Monetary Policy Shocks In Japan: A Factor Augmented Vector Autoregressive Approach," The Japanese Economic Review, Japanese Economic Association, vol. 58(4), pages 484-503, December.
    26. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    27. Sugo, Tomohiro & Ueda, Kozo, 2008. "Estimating a dynamic stochastic general equilibrium model for Japan," Journal of the Japanese and International Economies, Elsevier, vol. 22(4), pages 476-502, December.
    28. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    29. Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Namba, Ryoichi & Nishiyama, Shin-Ichi, 2015. "Estimating a DSGE model for Japan in a data-rich environment," Journal of the Japanese and International Economies, Elsevier, vol. 36(C), pages 25-55.
    30. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. IIBOSHI Hirokuni & MATSUMAE Tatsuyoshi & NISHIYAMA Shin-Ichi, 2014. "Sources of the Great Recession:A Bayesian Approach of a Data-Rich DSGE model with Time-Varying Volatility Shocks," ESRI Discussion paper series 313, Economic and Social Research Institute (ESRI).
    2. Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Namba, Ryoichi & Nishiyama, Shin-Ichi, 2015. "Estimating a DSGE model for Japan in a data-rich environment," Journal of the Japanese and International Economies, Elsevier, vol. 36(C), pages 25-55.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Namba, Ryoichi & Nishiyama, Shin-Ichi, 2015. "Estimating a DSGE model for Japan in a data-rich environment," Journal of the Japanese and International Economies, Elsevier, vol. 36(C), pages 25-55.
    2. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    3. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    4. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    5. Yasuo Hirose & Takushi Kurozumi, 2012. "Do Investment-Specific Technological Changes Matter For Business Fluctuations? Evidence From Japan," Pacific Economic Review, Wiley Blackwell, vol. 17(2), pages 208-230, May.
    6. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
    7. IIBOSHI Hirokuni & MATSUMAE Tatsuyoshi & NISHIYAMA Shin-Ichi, 2014. "Sources of the Great Recession:A Bayesian Approach of a Data-Rich DSGE model with Time-Varying Volatility Shocks," ESRI Discussion paper series 313, Economic and Social Research Institute (ESRI).
    8. Carlo A. Favero, 2009. "The Econometrics of Monetary Policy: An Overview," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 16, pages 821-850, Palgrave Macmillan.
    9. Hirose, Yasuo, 2020. "An Estimated Dsge Model With A Deflation Steady State," Macroeconomic Dynamics, Cambridge University Press, vol. 24(5), pages 1151-1185, July.
    10. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    11. Consolo, Agostino & Favero, Carlo A. & Paccagnini, Alessia, 2009. "On the statistical identification of DSGE models," Journal of Econometrics, Elsevier, vol. 150(1), pages 99-115, May.
    12. Alessia Paccagnini, 2012. "Comparing Hybrid DSGE Models," Working Papers 228, University of Milano-Bicocca, Department of Economics, revised Dec 2012.
    13. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    14. Carlo A. Favero, 2007. "Model Evaluation in Macroeconometrics: from early empirical macroeconomic models to DSGE models," Working Papers 327, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    15. Marco Del Negro & Frank Schorfheide, 2009. "Monetary Policy Analysis with Potentially Misspecified Models," American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
    16. Daniel O. Beltran & David Draper, 2018. "Estimating dynamic macroeconomic models: how informative are the data?," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(2), pages 501-520, February.
    17. Iiboshi, Hirokuni & Nishiyama, Shin-Ichi & Watanabe, Toshiaki, 2006. "An Estimated Dynamic Stochastic General Equilibrium Model of the Japanese Economy: A Bayesian Analysis," MPRA Paper 85702, University Library of Munich, Germany.
    18. Mr. Maxym Kryshko, 2011. "Data-Rich DSGE and Dynamic Factor Models," IMF Working Papers 2011/216, International Monetary Fund.
    19. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
    20. Faust, Jon & Gupta, Abhishek, 2010. "Posterior Predictive Analysis for Evaluating DSGE Models," MPRA Paper 26721, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:esj:esridp:292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: HORI nobuko (email available below). General contact details of provider: https://edirc.repec.org/data/esrgvjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.