[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1915.html
   My bibliography  Save this paper

Bayesian approaches to cointegratrion

Author

Listed:
  • Koop, G.
  • Strachan, R.W.
  • van Dijk, H.K.
  • Villani, M.
Abstract
The purpose of this paper is to survey and critically assess the Bayesian cointegration literature. In one sense, Bayesian analysis of cointegration is straightforward. The researcher can combine the likelihood function with a prior and do Bayesian inference with the resulting posterior. However, interesting and empirically important issues of global and local identification (and, as a result, prior elicitation) arise from the fact that the matrix of long run parameters is potentially of reduced rank. As we shall see, these identification problems can cause serious problems for Bayesian inference. For instance, a common noninformative prior can lead to a posterior distribution which is improper (i.e. is not a valid p.d.f. since it does not integrate to one) thus precluding valid statistical inference. This issue was brought forward by Kleibergen and Van Dijk (1994, 1998). The development of the Bayesian cointegration literature reflects an increasing awareness of these issues and this paper is organized to reflect this development. In particular, we begin by discussing early work, based on VAR or Vector Moving Average (VMA) representations which ignored these issues. We then proceed to a discussion of work based on the ECM representation, beginning with a simple specification using the linear normalization and normal priors before moving onto the recent literature which develops methods for sensible treatment of the identification issues.

Suggested Citation

  • Koop, G. & Strachan, R.W. & van Dijk, H.K. & Villani, M., 2005. "Bayesian approaches to cointegratrion," Econometric Institute Research Papers EI 2005-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1915
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1915/ei200513.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gael Martin, 2001. "Bayesian Analysis Of A Fractional Cointegration Model," Econometric Reviews, Taylor & Francis Journals, vol. 20(2), pages 217-234.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    3. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    4. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    5. Phillips, Peter C B, 1996. "Econometric Model Determination," Econometrica, Econometric Society, vol. 64(4), pages 763-812, July.
    6. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    7. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    8. Richard, J. -F. & Tompa, H., 1980. "On the evaluation of poly-t density functions," Journal of Econometrics, Elsevier, vol. 12(3), pages 335-351, April.
    9. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    10. Strachan, Rodney W, 2003. "Valid Bayesian Estimation of the Cointegrating Error Correction Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 185-195, January.
    11. BAUWENS, Luc & GIOT, Pierre, 1997. "A Gibbs sampling approach to cointegration," LIDAM Discussion Papers CORE 1997016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Phillips, Peter C B, 1994. "Some Exact Distribution Theory for Maximum Likelihood Estimators of Cointegrating Coefficients in Error Correction Models," Econometrica, Econometric Society, vol. 62(1), pages 73-93, January.
    13. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(6), pages 701-743, December.
    14. Urbain, Jean-Pierre, 1992. "On Weak Exogeneity in Error Correction Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(2), pages 187-207, May.
    15. Kleibergen, Frank & van Dijk, Herman K., 1994. "On the Shape of the Likelihood/Posterior in Cointegration Models," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 514-551, August.
    16. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    17. John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
    18. Johansen, Soren, 1992. "Cointegration in partial systems and the efficiency of single-equation analysis," Journal of Econometrics, Elsevier, vol. 52(3), pages 389-402, June.
    19. Koop, Gary, 1991. "Cointegration tests in present value relationships : A Bayesian look at the bivariate properties of stock prices and dividends," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 105-139.
    20. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    21. Paap, Richard & van Dijk, Herman K, 2003. "Bayes Estimates of Markov Trends in Possibly Cointegrated Series: An Application to U.S. Consumption and Income," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 547-563, October.
    22. Geweke, John, 1996. "Bayesian reduced rank regression in econometrics," Journal of Econometrics, Elsevier, vol. 75(1), pages 121-146, November.
    23. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    24. Larsson, Rolf & Villani, Mattias, 2001. "A distance measure between cointegration spaces," Economics Letters, Elsevier, vol. 70(1), pages 21-27, January.
    25. Strachan, R.W. & van Dijk, H.K., 2004. "Valuing structure, model uncertainty and model averaging in vector autoregressive processes," Econometric Institute Research Papers EI 2004-23, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    26. Chao, John C. & Phillips, Peter C. B., 1999. "Model selection in partially nonstationary vector autoregressive processes with reduced rank structure," Journal of Econometrics, Elsevier, vol. 91(2), pages 227-271, August.
    27. Strachan, Rodney W. & Inder, Brett, 2004. "Bayesian analysis of the error correction model," Journal of Econometrics, Elsevier, vol. 123(2), pages 307-325, December.
    28. Bauwens, Luc & Richard, Jean-Francois, 1985. "A 1-1 poly-t random variable generator with application to Monte Carlo integration," Journal of Econometrics, Elsevier, vol. 29(1-2), pages 19-46.
    29. Koop, Gary, 1994. "An objective Bayesian analysis of common stochastic trends in international stock prices and exchange rates," Journal of Empirical Finance, Elsevier, vol. 1(3-4), pages 343-364, July.
    30. Jukka Corander & Mattias Villani, 2004. "Bayesian assessment of dimensionality in reduced rank regression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(3), pages 255-270, August.
    31. Gael M. Martin, 2000. "US deficit sustainability: a new approach based on multiple endogenous breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 83-105.
    32. Dorfman, Jeffrey H., 1995. "A numerical bayesian test for cointegration of AR processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 289-324.
    33. Fisher, Walter D., 1976. "Normalization in point estimation," Journal of Econometrics, Elsevier, vol. 4(3), pages 243-252, August.
    34. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    35. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    36. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    37. Villani, Mattias, 2001. "Bayesian prediction with cointegrated vector autoregressions," International Journal of Forecasting, Elsevier, vol. 17(4), pages 585-605.
    38. Boswijk, H Peter, 1996. "Testing Identifiability of Cointegrating Vectors," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 153-160, April.
    39. Luukkonen, Ritva & Ripatti, Antti & Saikkonen, Pentti, 1999. "Testing for a Valid Normalization of Cointegrating Vectors in Vector Autoregressive Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(2), pages 195-204, April.
    40. Phillips, Peter C B & Ploberger, Werner, 1996. "An Asymptotic Theory of Bayesian Inference for Time Series," Econometrica, Econometric Society, vol. 64(2), pages 381-412, March.
    41. Strachan, R.W. & van Dijk, H.K., 2003. "Bayesian model selection for a sharp null and a diffuse alternative with econometric applications," Econometric Institute Research Papers EI 2003-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    2. Andrea Silvestrini, 2010. "Testing fiscal sustainability in Poland: a Bayesian analysis of cointegration," Empirical Economics, Springer, vol. 39(1), pages 241-274, August.
    3. Gareth W. Peters & Balakrishnan Kannan & Ben Lasscock & Chris Mellen, 2010. "Model Selection and Adaptive Markov chain Monte Carlo for Bayesian Cointegrated VAR model," Papers 1004.3830, arXiv.org.
    4. Fuentes-Albero, Cristina & Melosi, Leonardo, 2013. "Methods for computing marginal data densities from the Gibbs output," Journal of Econometrics, Elsevier, vol. 175(2), pages 132-141.
    5. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2019. "Priors for the Long Run," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 565-580, April.
    6. Ciobotaru, Corina & Mazza, Christian, 2022. "Consistency and asymptotic normality of M-estimates of scatter on Grassmann manifolds," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    7. Helmut Luetkepohl, 2007. "Econometric Analysis with Vector Autoregressive Models," Economics Working Papers ECO2007/11, European University Institute.
    8. Sugita, Katsuhiro & 杉田, 勝弘, 2006. "Bayesian Analysis of Dynamic Multivariate Models with Multiple Structural Breaks," Discussion Papers 2006-14, Graduate School of Economics, Hitotsubashi University.
    9. Kociecki, Andrzej, 2012. "Orbital Priors for Time-Series Models," MPRA Paper 42804, University Library of Munich, Germany.
    10. Villani, Mattias, 2005. "Bayesian Inference of General Linear Restrictions on the Cointegration Space," Working Paper Series 189, Sveriges Riksbank (Central Bank of Sweden).
    11. Sugita, Katsuhiro & 杉田, 勝弘, 2006. "Time Series Analysis of the Expectations Hypothesis for the Japanese Term Structure of Interest Rates in the Presence of Multiple Structural Breaks," Discussion Papers 2006-15, Graduate School of Economics, Hitotsubashi University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villani, Mattias, 2005. "Bayesian Inference of General Linear Restrictions on the Cointegration Space," Working Paper Series 189, Sveriges Riksbank (Central Bank of Sweden).
    2. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    3. Rodney Strachan & Herman K. van Dijk, "undated". "Bayesian Model Averaging in Vector Autoregressive Processes with an Investigation of Stability of the US Great Ratios and Risk of a Liquidity Trap in the USA, UK and Japan," MRG Discussion Paper Series 1407, School of Economics, University of Queensland, Australia.
    4. Warne, Anders, 2006. "Bayesian inference in cointegrated VAR models: with applications to the demand for euro area M3," Working Paper Series 692, European Central Bank.
    5. Gary Koop & Roberto Leon-Gonzalez & Rodney Strachan, 2008. "Bayesian inference in a cointegrating panel data model," Advances in Econometrics, in: Bayesian Econometrics, pages 433-469, Emerald Group Publishing Limited.
    6. Villani, Mattias, 2006. "Bayesian point estimation of the cointegration space," Journal of Econometrics, Elsevier, vol. 134(2), pages 645-664, October.
    7. Rodney W. Strachan & Herman K. van Dijk, 2014. "Divergent Priors and Well Behaved Bayes Factors," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(1), pages 1-31, March.
    8. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    9. Gary Koop & Roberto León-González & Rodney W. Strachan, 2010. "Efficient Posterior Simulation for Cointegrated Models with Priors on the Cointegration Space," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 224-242, April.
    10. Andrea Silvestrini, 2010. "Testing fiscal sustainability in Poland: a Bayesian analysis of cointegration," Empirical Economics, Springer, vol. 39(1), pages 241-274, August.
    11. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2019. "Priors for the Long Run," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 565-580, April.
    12. van Dijk, H.K., 2002. "On Bayesian structural inference in a simultaneous equation model," Econometric Institute Research Papers EI 2002-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Strachan, Rodney W. & Inder, Brett, 2004. "Bayesian analysis of the error correction model," Journal of Econometrics, Elsevier, vol. 123(2), pages 307-325, December.
    14. Mattias Villani, 2009. "Steady-state priors for vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 630-650.
    15. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2011. "Bayesian inference in a time varying cointegration model," Journal of Econometrics, Elsevier, vol. 165(2), pages 210-220.
    16. Kleibergen, F.R. & Paap, R., 1996. "Priors, Posterior Odds and Lagrange Multiplier Statistics in Bayesian Analyses of Cointegration," Econometric Institute Research Papers EI 9668-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Villani, Mattias, 2003. "Bayes Estimators of the Cointegration Space," Working Paper Series 150, Sveriges Riksbank (Central Bank of Sweden).
    18. Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
    19. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    20. Chew Lian Chua & Sarantis Tsiaplias, 2014. "A Bayesian Approach to Modelling Bivariate Time-Varying Cointegration and Cointegrating Rank," Melbourne Institute Working Paper Series wp2014n27, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.