[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/1363.html
   My bibliography  Save this paper

A Bayes Inference Approach to Testing Mean Reversion in the Swedish Stock Market

Author

Listed:
  • Andreas Graflund

    (Lund University)

Abstract
This paper makes use of the Bayesian approach to test for mean reversion in the Swedish stock market via Gibbs sampling. We use a sample of eighty years of monthly Swedish stock market returns including dividends from December 1918 to December 1998. We test for mean reversion in the short-run using two up to twelve months' horizons and in the long-run using yearly horizons up to ten years. Previous evidence of mean reversion via variance ratio is controversial because the test is only valid under the assumption of constant expected return. The return series from financial markets are well known to exhibit time varying volatility. Thus, the findings of mean reversion in the Swedish stock market might be explained by time-variation, or regime switches, in volatility. Hence we assume two regimes: low and high volatility and we let the volatility regimes be described by a two-state Hidden Markov Model, were the states are unobservable parameters. The Bayesian Gibbs sampling framework is advantageous as is allows us to make statistical inference of the parameters of interest without direct estimation of the likelihood function. This is pleasant property as we avoid the problem of estimating sometimes difficult likelihood functions. The result of our analysis offsets previous findings of mean reversion in the Swedish stock market. By simply account for the heteroscedasticty of the data and taking estimation bias into account we can not find any support of mean reversion. On the contrary the Swedish stock market can be characterized by two regimes, a tranquil and a volatile, and within the regimes the stock market is random. This finding is in line with what have been found on the U.S. stock market 1926-1986. Thus, accounting for time-variation in volatility and estimation bias improves the variance ratio test.

Suggested Citation

  • Andreas Graflund, 2000. "A Bayes Inference Approach to Testing Mean Reversion in the Swedish Stock Market," Econometric Society World Congress 2000 Contributed Papers 1363, Econometric Society.
  • Handle: RePEc:ecm:wc2000:1363
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/1363.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myung Jig Kim & Charles R. Nelson & Richard Startz, 1991. "Mean Reversion in Stock Prices? A Reappraisal of the Empirical Evidence," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 515-528.
    2. Malliaropulos, Dimitrios & Priestley, Richard, 1999. "Mean reversion in Southeast Asian stock markets," Journal of Empirical Finance, Elsevier, vol. 6(4), pages 355-384, October.
    3. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    4. Billio, M. & Monfort, A. & Robert, C. P., 1999. "Bayesian estimation of switching ARMA models," Journal of Econometrics, Elsevier, vol. 93(2), pages 229-255, December.
    5. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    6. Luginbuhl, Rob & de Vos, Aart, 1999. "Bayesian Analysis of an Unobserved-Component Time Series Model of GDP with Markov-Switching and Time-Varying Growths," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 456-465, October.
    7. So, Mike K P & Li, W K, 1999. "Bayesian Unit-Root Testing in Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 491-496, October.
    8. Lennart Berg & Johan Lyhagen, 1998. "Short and long-run dependence in Swedish stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 8(4), pages 435-443.
    9. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
    10. Kim, Chang-Jin & Nelson, Charles R., 1998. "Testing for mean reversion in heteroskedastic data II: Autoregression tests based on Gibbs-sampling-augmented randomization1," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 385-396, October.
    11. Albert, James H & Chib, Siddhartha, 1993. "Bayes Inference via Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 1-15, January.
    12. Dueker, Michael, 1999. "Conditional Heteroscedasticity in Qualitative Response Models of Time Series: A Gibbs-Sampling Approach to the Bank Prime Rate," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 466-472, October.
    13. Kim, Chang-Jin & Nelson, Charles R. & Startz, Richard, 1998. "Testing for mean reversion in heteroskedastic data based on Gibbs-sampling-augmented randomization1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 131-154, June.
    14. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Graflund, Andreas, 2001. "Are the Nordic Stock Markets Mean Reverting?," Working Papers 2001:15, Lund University, Department of Economics.
    2. Bhar, Ramaprasad & Hamori, Shigeyuki, 2004. "Empirical characteristics of the permanent and transitory components of stock return: analysis in a Markov switching heteroscedasticity framework," Economics Letters, Elsevier, vol. 82(2), pages 157-165, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graflund, Andreas, 2000. "A Bayesian Inference Approach to Testing Mean Reversion in the Swedish Stock Market," Working Papers 2000:8, Lund University, Department of Economics, revised 30 Jan 2002.
    2. Graflund, Andreas, 2001. "Are the Nordic Stock Markets Mean Reverting?," Working Papers 2001:15, Lund University, Department of Economics.
    3. Amélie Charles & Olivier Darné, 2009. "Variance‐Ratio Tests Of Random Walk: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 503-527, July.
    4. Shlomo Zilca, 2010. "The variance ratio and trend stationary model as extensions of a constrained autoregressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 467-475.
    5. Luger, Richard, 2003. "Exact non-parametric tests for a random walk with unknown drift under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 115(2), pages 259-276, August.
    6. John B. Donaldson & Rajnish Mehra, 2021. "Average crossing time: An alternative characterization of mean aversion and reversion," Quantitative Economics, Econometric Society, vol. 12(3), pages 903-944, July.
    7. L. Spierdijk & J.A. Bikker, 2012. "Mean Reversion in Stock Prices: Implications for Long-Term Investors," Working Papers 12-07, Utrecht School of Economics.
    8. Chopin, Nicolas & Pelgrin, Florian, 2004. "Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation," Journal of Econometrics, Elsevier, vol. 123(2), pages 327-344, December.
    9. Maddalena Cavicchioli, 2021. "OLS Estimation of Markov switching VAR models: asymptotics and application to energy use," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 431-449, September.
    10. Kim, Chang-Jin & Morley, James C. & Nelson, Charles R., 2001. "Does an intertemporal tradeoff between risk and return explain mean reversion in stock prices?," Journal of Empirical Finance, Elsevier, vol. 8(4), pages 403-426, September.
    11. Omokolade Akinsomi & Mehmet Balcilar & Rıza Demirer & Rangan Gupta, 2017. "The effect of gold market speculation on REIT returns in South Africa: a behavioral perspective," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 41(4), pages 774-793, October.
    12. Onour, Ibrahim, 2021. "The impact of the covid-19 pandemic on major Asian stock markets: evidence of decoupling effects," MPRA Paper 115994, University Library of Munich, Germany.
    13. Ichiue, Hibiki & Koyama, Kentaro, 2011. "Regime switches in exchange rate volatility and uncovered interest parity," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1436-1450.
    14. Billio Monica & Casarin Roberto, 2011. "Beta Autoregressive Transition Markov-Switching Models for Business Cycle Analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-32, September.
    15. Gregory Galay & Henry Thille, 2021. "Pipeline capacity and the dynamics of Alberta crude oil price spreads," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 54(3), pages 1072-1102, November.
    16. Kim, Chang-Jin & Nelson, Charles R. & Startz, Richard, 1998. "Testing for mean reversion in heteroskedastic data based on Gibbs-sampling-augmented randomization1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 131-154, June.
    17. McPherson, Matthew Q. & Palardy, Joseph & Vilasuso, Jon, 2005. "Are international stock returns predictable?: An application of spectral shape tests corrected for heteroskedasticity," Journal of Economics and Business, Elsevier, vol. 57(2), pages 103-118.
    18. Eduardo Lima & Benjamin Tabak, 2009. "Tests of Random Walk: A Comparison of Bootstrap Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 34(4), pages 365-382, November.
    19. Turattia, Douglas Eduardo & Mendes, Fernando Henrique P.S. & Caldeira, João Frois, 2020. "Testing for mean reversion in Bitcoin returns with Gibbs-sampling-augmented randomization," Finance Research Letters, Elsevier, vol. 34(C).
    20. L. Spierdijk & J.A. Bikker, 2012. "Mean Reversion in Stock Prices: Implications for Long-Term Investors," Working Papers 12-07, Utrecht School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.