[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1849.html
   My bibliography  Save this paper

Sieve Inference on Semi-nonparametric Time Series Models

Author

Listed:
Abstract
The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless, ignoring the temporal dependence in small samples may not lead to accurate inference. We then propose an easy-to-compute and more accurate inference procedure based on a "pre-asymptotic" sieve variance estimator that captures temporal dependence. We construct a "pre-asymptotic" Wald statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators of both regular (i.e., root-T estimable) and irregular functionals, a scaled "pre-asymptotic" Wald statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator is held fixed. Simulations indicate that our scaled "pre-asymptotic" Wald test with F critical values has more accurate size in finite samples than the usual Wald test with chi-square critical values.

Suggested Citation

  • Xiaohong Chen & Zhipeng Liao & Yixiao Sun, 2012. "Sieve Inference on Semi-nonparametric Time Series Models," Cowles Foundation Discussion Papers 1849, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1849
    Note: CFP 1401
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d18/d1849.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, Peter C.B., 2005. "Hac Estimation By Automated Regression," Econometric Theory, Cambridge University Press, vol. 21(1), pages 116-142, February.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    4. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    5. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    6. Xiaohong Chen, 2011. "Penalized Sieve Estimation and Inference of Semi-Nonparametric Dynamic Models: A Selective Review," Cowles Foundation Discussion Papers 1804, Cowles Foundation for Research in Economics, Yale University.
    7. Sun, Yixiao, 2011. "Robust trend inference with series variance estimator and testing-optimal smoothing parameter," Journal of Econometrics, Elsevier, vol. 164(2), pages 345-366, October.
    8. P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
    9. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    10. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    11. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    12. Conley, Timothy G. & Hansen, Lars Peter & Liu, Wen-Fang, 1997. "Bootstrapping The Long Run," Macroeconomic Dynamics, Cambridge University Press, vol. 1(2), pages 279-311, June.
    13. Muller, Ulrich K., 2007. "A theory of robust long-run variance estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1331-1352, December.
    14. Michael Jansson, 2004. "The Error in Rejection Probability of Simple Autocorrelation Robust Tests," Econometrica, Econometric Society, vol. 72(3), pages 937-946, May.
    15. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    16. Pritsker, Matt, 1998. "Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 449-487.
    17. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    18. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    19. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    20. Lu, Zudi & Linton, Oliver, 2007. "Local Linear Fitting Under Near Epoch Dependence," Econometric Theory, Cambridge University Press, vol. 23(1), pages 37-70, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohong Chen & Demian Pouzo, 2013. "Sieve Quasi Likelihood Ratio Inference on Semi/nonparametric Conditional Moment Models," Cowles Foundation Discussion Papers 1897, Cowles Foundation for Research in Economics, Yale University.
    2. Daniel Ackerberg & Xiaohong Chen & Jinyong Hahn & Zhipeng Liao, 2014. "Asymptotic Efficiency of Semiparametric Two-step GMM," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 919-943.
    3. Peter C.B. Phillips & Zhipeng Liao, 2012. "Series Estimation of Stochastic Processes: Recent Developments and Econometric Applications," Cowles Foundation Discussion Papers 1871, Cowles Foundation for Research in Economics, Yale University.
    4. Xiaohong Chen & Yin Jia Jeff Qiu, 2016. "Methods for Nonparametric and Semiparametric Regressions with Endogeneity: A Gentle Guide," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 259-290, October.
    5. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    6. Jungyoon Lee & Peter Robinson, 2016. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 63380, London School of Economics and Political Science, LSE Library.
    7. Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohong Chen & . . & Yixiao Sun, 2012. "Sieve inference on semi-nonparametric time series models," CeMMAP working papers 06/12, Institute for Fiscal Studies.
    2. Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
    3. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017. "A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data," Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
    4. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    5. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    6. Chen, Xiaohong & Liao, Zhipeng, 2015. "Sieve semiparametric two-step GMM under weak dependence," Journal of Econometrics, Elsevier, vol. 189(1), pages 163-186.
    7. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    8. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
    9. Hwang, Jungbin & Sun, Yixiao, 2017. "Asymptotic F and t tests in an efficient GMM setting," Journal of Econometrics, Elsevier, vol. 198(2), pages 277-295.
    10. Li, Jia & Liao, Zhipeng, 2020. "Uniform nonparametric inference for time series," Journal of Econometrics, Elsevier, vol. 219(1), pages 38-51.
    11. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    12. Yixiao Sun & Xuexin Wang, 2019. "An Asymptotically F-Distributed Chow Test in the Presence of Heteroscedasticity and Autocorrelation," Papers 1911.03771, arXiv.org.
    13. Sun, Yixiao, 2013. "Fixed-smoothing Asymptotics in a Two-step GMM Framework," University of California at San Diego, Economics Working Paper Series qt64x4z265, Department of Economics, UC San Diego.
    14. Sun, Yixiao, 2011. "Robust trend inference with series variance estimator and testing-optimal smoothing parameter," Journal of Econometrics, Elsevier, vol. 164(2), pages 345-366, October.
    15. Zhang, Xianyang & Shao, Xiaofeng, 2013. "On a general class of long run variance estimators," Economics Letters, Elsevier, vol. 120(3), pages 437-441.
    16. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    17. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    18. Su, Liangjun & Jin, Sainan, 2012. "Sieve estimation of panel data models with cross section dependence," Journal of Econometrics, Elsevier, vol. 169(1), pages 34-47.
    19. Hall, George & Rust, John, 2021. "Estimation of endogenously sampled time series: The case of commodity price speculation in the steel market," Journal of Econometrics, Elsevier, vol. 222(1), pages 219-243.
    20. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.

    More about this item

    Keywords

    Weak dependence; Sieve M estimation; Sieve Riesz representor; Irregular functional; Misspecification; Pre-asymptotic variance; Orthogonal series long run variance estimation; F distribution;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.