[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1611.html
   My bibliography  Save this paper

Is Industrial Production Still the Dominant Factor for the US Economy?

Author

Listed:
  • Elena Andreou

    (University of Cyprus - Department of Economics)

  • Patrick Gagliardini

    (University of Lugano and Swiss Finance Institute; Ecole Polytechnique Fédérale de Lausanne - Swiss Finance Institute)

  • Eric Ghysels

    (University of North Carolina Kenan-Flagler Business School; University of North Carolina (UNC) at Chapel Hill - Department of Economics)

  • Mirco Rubin

    (Università della Svizzera Italiana and Swiss Finance Institute)

Abstract
We propose a new class of approximate factor models which enable us to study the full spectrum of quarterly IP sector data combined with annual non-IP sectors of the economy. We derive the large sample properties of the estimators for the new class of factor models involving mixed frequency data. Despite the growth of service sectors, we find that a single common factor explaining 90% of the variability in IP output growth index also explains 60% of total GDP output growth fluctuations. A single low frequency factor unrelated to manufacturing explains 14% of GDP growth. The picture with a structural factor model featuring technological innovations is quite different. IP sectors technology shocks do not play a dominant role.

Suggested Citation

  • Elena Andreou & Patrick Gagliardini & Eric Ghysels & Mirco Rubin, 2016. "Is Industrial Production Still the Dominant Factor for the US Economy?," Swiss Finance Institute Research Paper Series 16-11, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp1611
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=2731334
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vasco Carvalho, 2007. "Aggregate fluctuations and the network structure of intersectoral trade," Economics Working Papers 1206, Department of Economics and Business, Universitat Pompeu Fabra, revised Oct 2010.
    2. Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2011. "Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production," Journal of Political Economy, University of Chicago Press, vol. 119(1), pages 1-38.
    3. Chen, K. H. & Robinson, J., 1989. "Comparison of factor spaces of two related populations," Journal of Multivariate Analysis, Elsevier, vol. 28(2), pages 190-203, February.
    4. Cecilia Frale & Libero Monteforte, "undated". "FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure," Working Papers 3, Department of the Treasury, Ministry of the Economy and of Finance.
    5. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    6. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    7. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    8. Goyal, Amit & Pérignon, Christophe & Villa, Christophe, 2008. "How common are common return factors across the NYSE and Nasdaq?," Journal of Financial Economics, Elsevier, vol. 90(3), pages 252-271, December.
    9. Korajczyk, Robert A. & Sadka, Ronnie, 2008. "Pricing the commonality across alternative measures of liquidity," Journal of Financial Economics, Elsevier, vol. 87(1), pages 45-72, January.
    10. Luis C. Nunes, 2005. "Nowcasting quarterly GDP growth in a monthly coincident indicator model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 575-592.
    11. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    12. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    13. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    14. Emanuel Moench & Serena Ng, 2011. "A hierarchical factor analysis of U.S. housing market dynamics," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 1-24, February.
    15. Jungbacker, B. & Koopman, S.J. & van der Wel, M., 2011. "Maximum likelihood estimation for dynamic factor models with missing data," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1358-1368, August.
    16. Donald, Stephen G. & Fortuna, Natércia & Pipiras, Vladas, 2007. "On Rank Estimation In Symmetric Matrices: The Case Of Indefinite Matrix Estimators," Econometric Theory, Cambridge University Press, vol. 23(6), pages 1217-1232, December.
    17. Chen, Pu, 2010. "A Grouped Factor Model," MPRA Paper 28083, University Library of Munich, Germany, revised 11 Jan 2011.
    18. Dauxois, J. & Romain, Y. & Viguier, S., 1993. "Comparison of Two Factor Subspaces," Journal of Multivariate Analysis, Elsevier, vol. 44(1), pages 160-178, January.
    19. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    20. Tibor F. Liska, 2007. "The Liska model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 29(3), pages 363-381, December.
    21. Gagliardini, Patrick & Gourieroux, Christian, 2014. "Efficiency In Large Dynamic Panel Models With Common Factors," Econometric Theory, Cambridge University Press, vol. 30(5), pages 961-1020, October.
    22. Gregory, Allan W. & Head, Allen C., 1999. "Common and country-specific fluctuations in productivity, investment, and the current account," Journal of Monetary Economics, Elsevier, vol. 44(3), pages 423-451, December.
    23. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    24. Ayhan Kose, M. & Otrok, Christopher & Whiteman, Charles H., 2008. "Understanding the evolution of world business cycles," Journal of International Economics, Elsevier, vol. 75(1), pages 110-130, May.
    25. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    26. Gonzalo Camba-Mendez & George Kapetanios, 2009. "Statistical Tests and Estimators of the Rank of a Matrix and Their Applications in Econometric Modelling," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 581-611.
    27. Cho, David Chinhyung, 1984. "On Testing the Arbitrage Pricing Theory: Inter-battery Factor Analysis," Journal of Finance, American Finance Association, vol. 39(5), pages 1485-1502, December.
    28. Long, John B, Jr & Plosser, Charles I, 1983. "Real Business Cycles," Journal of Political Economy, University of Chicago Press, vol. 91(1), pages 39-69, February.
    29. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    30. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    31. Ledyard Tucker, 1958. "An inter-battery method of factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(2), pages 111-136, June.
    32. Michael Horvath, 1998. "Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Independent Sectoral Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(4), pages 781-808, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Constantino Hevia & Martín Sola & Ivan Petrella, 2022. "Bond risk premia, priced regime shifts, and macroeconomic fundamentals," Department of Economics Working Papers 2022_03, Universidad Torcuato Di Tella.
    2. Libero Monteforte & Valentina Raponi, 2019. "Short‐term forecasts of economic activity: Are fortnightly factors useful?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 207-221, April.
    3. Markus Pelger & Ruoxuan Xiong, 2022. "State-Varying Factor Models of Large Dimensions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1315-1333, June.
    4. Babii, Andrii & Chen, Xi & Ghysels, Eric, 2019. "Commercial and Residential Mortgage Defaults: Spatial Dependence with Frailty," Journal of Econometrics, Elsevier, vol. 212(1), pages 47-77.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    2. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    3. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    4. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    5. Heaton, Chris & Solo, Victor, 2012. "Estimation of high-dimensional linear factor models with grouped variables," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 348-367.
    6. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    7. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    8. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    9. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    10. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    11. Simon Freyaldenhoven, 2017. "A Generalized Factor Model with Local Factors," 2017 Papers pfr361, Job Market Papers.
    12. Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2011. "Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production," Journal of Political Economy, University of Chicago Press, vol. 119(1), pages 1-38.
    13. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    14. Poncela, Pilar, 2012. "More is not always better : back to the Kalman filter in dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS ws122317, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
    16. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    17. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    18. Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
    19. Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2011. "One-Sided Representations of Generalized Dynamic Factor Models," Working Papers ECARES ECARES 2011-019, ULB -- Universite Libre de Bruxelles.
    20. Luca Gambetti, 2010. "Fiscal Policy, Foresight and the Trade Balance in the U.S," UFAE and IAE Working Papers 852.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    21. Alain Kabundi & Francisco Nadal De Simone, 2011. "France in the global economy: a structural approximate dynamic factor model analysis," Empirical Economics, Springer, vol. 41(2), pages 311-342, October.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.