[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/bzn/wpaper/bemps83.html
   My bibliography  Save this paper

Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach

Author

Listed:
  • Davide Ferrari

    (Free University of Bozen-Bolzano, Italy)

  • Francesco Ravazzolo

    (Free University of Bozen-Bolzano, Italy; BI Norwegian Business School, Norway)

  • Joaquin Vespignani

    (University of Tasmania, Tasmanian School of Business and Economics, Australia)

Abstract
This paper focuses on forecasting quarterly nominal global energy prices of commodities, such as oil, gas and coal, using the Global VAR dataset proposed by Mohaddes and Raissi (2018). This dataset includes a number of potentially informative quarterly macroeconomic variables for the 33 largest economies, overall accounting for more than 80% of the global GDP. To deal with the information on this large database, we apply dynamic factor models based on a penalized maximum likelihood approach that allows to shrink parameters to zero and to estimate sparse factor loadings. The estimated latent factors show considerable sparsity and heterogeneity in the selected loadings across variables. When the model is extended to predict energy commodity prices up to four periods ahead, results indicate larger predictability relative to the benchmark random walk model for 1-quarter ahead for all energy commodities and up to 4 quarters ahead for gas prices. Our model also provides superior forecasts than machine learning techniques, such as elastic net, LASSO and random forest, applied to the same database.

Suggested Citation

  • Davide Ferrari & Francesco Ravazzolo & Joaquin Vespignani, 2021. "Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach," BEMPS - Bozen Economics & Management Paper Series BEMPS83, Faculty of Economics and Management at the Free University of Bozen.
  • Handle: RePEc:bzn:wpaper:bemps83
    as

    Download full text from publisher

    File URL: https://repec.unibz.it/bemps83.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    2. Kang, Wensheng & Ratti, Ronald A. & Vespignani, Joaquin, 2016. "The impact of oil price shocks on the U.S. stock market: A note on the roles of U.S. and non-U.S. oil production," Economics Letters, Elsevier, vol. 145(C), pages 176-181.
    3. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2020. "Forecasting natural gas prices using highly flexible time-varying parameter models," Working Papers 2020-01, University of Tasmania, Tasmanian School of Business and Economics.
    4. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    5. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    6. Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2015. "What Drives Oil Prices? Emerging Versus Developed Economies," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1013-1028, November.
    7. A. Anzuini & M. J. Lombardi & P. Pagano, 2013. "The Impact of Monetary Policy Shocks on Commodity Prices," International Journal of Central Banking, International Journal of Central Banking, vol. 9(3), pages 125-150, September.
    8. Mauro Bernardi & Leopoldo Catania, 2014. "The Model Confidence Set package for R," Papers 1410.8504, arXiv.org.
    9. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
    10. Hilde C. Bjørnland & Vegard H. Larsen & Junior Maih, 2018. "Oil and Macroeconomic (In)stability," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(4), pages 128-151, October.
    11. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
    12. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    13. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    14. Ratti, Ronald A. & Vespignani, Joaquin L., 2015. "Commodity prices and BRIC and G3 liquidity: A SFAVEC approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 18-33.
    15. Diaz, Elena Maria & Molero, Juan Carlos & Perez de Gracia, Fernando, 2016. "Oil price volatility and stock returns in the G7 economies," Energy Economics, Elsevier, vol. 54(C), pages 417-430.
    16. Lombardi, Marco J. & Ravazzolo, Francesco, 2016. "On the correlation between commodity and equity returns: Implications for portfolio allocation," Journal of Commodity Markets, Elsevier, vol. 2(1), pages 45-57.
    17. Mauro Bernardi & Leopoldo Catania, 2018. "The model confidence set package for R," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 8(2), pages 144-158.
    18. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    19. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
    20. Alquist, Ron & Bhattarai, Saroj & Coibion, Olivier, 2020. "Commodity-price comovement and global economic activity," Journal of Monetary Economics, Elsevier, vol. 112(C), pages 41-56.
    21. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    22. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    23. Abhay Abhyankar, Bing Xu, and Jiayue Wang, 2013. "Oil Price Shocks and the Stock Market: Evidence from Japan," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    24. Matyjaszek, Marta & Riesgo Fernández, Pedro & Krzemień, Alicja & Wodarski, Krzysztof & Fidalgo Valverde, Gregorio, 2019. "Forecasting coking coal prices by means of ARIMA models and neural networks, considering the transgenic time series theory," Resources Policy, Elsevier, vol. 61(C), pages 283-292.
    25. Caldara, Dario & Cavallo, Michele & Iacoviello, Matteo, 2019. "Oil price elasticities and oil price fluctuations," Journal of Monetary Economics, Elsevier, vol. 103(C), pages 1-20.
    26. Cologni, Alessandro & Manera, Matteo, 2008. "Oil prices, inflation and interest rates in a structural cointegrated VAR model for the G-7 countries," Energy Economics, Elsevier, vol. 30(3), pages 856-888, May.
    27. Francesco Ravazzolo & Tommy Sveen & Sepideh K. Zahiri, 2016. "Commodity Futures and Forecasting Commodity Currencies," Working Papers No 7/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    28. Shen Gao & Chenghan Hou & Bao H. Nguyen, 2020. "Forecasting natural gas prices using highly flexible time-varying parameter models," CAMA Working Papers 2020-30, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    29. Baffes, John, 2007. "Oil spills on other commodities," Resources Policy, Elsevier, vol. 32(3), pages 126-134, September.
    30. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 43(1 (Spring), pages 81-156.
    31. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    32. Hammoudeh, Shawkat & Reboredo, Juan C., 2018. "Oil price dynamics and market-based inflation expectations," Energy Economics, Elsevier, vol. 75(C), pages 484-491.
    33. Charles L. Evans & Jonas D. M. Fisher, 2011. "What are the implications of rising commodity prices for inflation and monetary policy?," Chicago Fed Letter, Federal Reserve Bank of Chicago, issue May.
    34. Hulshof, Daan & van der Maat, Jan-Pieter & Mulder, Machiel, 2016. "Market fundamentals, competition and natural-gas prices," Energy Policy, Elsevier, vol. 94(C), pages 480-491.
    35. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    36. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    37. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    38. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    39. Claudia Foroni & Francesco Ravazzolo & Pinho J. Ribeiro, 2015. "Forecasting commodity currencies: the role of fundamentals with short-lived predictive content," Working Paper 2015/14, Norges Bank.
    40. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    41. Jushan Bai & Peng Wang, 2016. "Econometric Analysis of Large Factor Models," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 53-80, October.
    42. Ephraim Leibtag, 2009. "How Much and How Quick? Pass through of Commodity and Input Cost Changes to Retail Food Prices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(5), pages 1462-1467.
    43. Chen, Yu-chin & Rogoff, Kenneth, 2003. "Commodity currencies," Journal of International Economics, Elsevier, vol. 60(1), pages 133-160, May.
    44. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(1 (Spring), pages 81-156.
    45. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-2009 Recession," NBER Working Papers 18094, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huber, Florian & Onorante, Luca & Pfarrhofer, Michael, 2024. "Forecasting euro area inflation using a huge panel of survey expectations," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1042-1054.
    2. Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
    3. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
    4. Junjie Liu & Lang Liu, 2024. "Point and Interval Forecasting of Coal Price Adopting a Novel Decomposition Integration Model," Energies, MDPI, vol. 17(16), pages 1-17, August.
    5. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    6. Wang, Tiantian & Wu, Fei & Dickinson, David & Zhao, Wanli, 2024. "Energy price bubbles and extreme price movements: Evidence from China's coal market," Energy Economics, Elsevier, vol. 129(C).
    7. Wang, Tiantian & Wu, Fei & Zhang, Dayong & Ji, Qiang, 2023. "Energy market reforms in China and the time-varying connectedness of domestic and international markets," Energy Economics, Elsevier, vol. 117(C).
    8. Jonathan Berrisch & Florian Ziel, 2022. "Distributional modeling and forecasting of natural gas prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1065-1086, September.
    9. Nguyen, BH & Zhang, Bo, 2022. "Forecasting oil Prices: can large BVARs help?," Working Papers 2022-04, University of Tasmania, Tasmanian School of Business and Economics.
    10. Silva, Rodolfo Rodrigues Barrionuevo & Martins, André Christóvão Pio & Soler, Edilaine Martins & Baptista, Edméa Cássia & Balbo, Antonio Roberto & Nepomuceno, Leonardo, 2022. "Two-stage stochastic energy procurement model for a large consumer in hydrothermal systems," Energy Economics, Elsevier, vol. 107(C).
    11. Zadeh, Omid Razavi & Romagnoli, Silvia, 2024. "Financing sustainable energy transition with algorithmic energy tokens," Energy Economics, Elsevier, vol. 132(C).
    12. Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    3. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    4. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    5. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    6. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    7. Kaufmann, Daniel & Scheufele, Rolf, 2017. "Business tendency surveys and macroeconomic fluctuations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
    8. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    9. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
    10. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    11. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
    12. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    13. Bennedsen, Mikkel & Hillebrand, Eric & Koopman, Siem Jan, 2021. "Modeling, forecasting, and nowcasting U.S. CO2 emissions using many macroeconomic predictors," Energy Economics, Elsevier, vol. 96(C).
    14. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    15. Bastianin, Andrea & Manera, Matteo, 2018. "How Does Stock Market Volatility React To Oil Price Shocks?," Macroeconomic Dynamics, Cambridge University Press, vol. 22(3), pages 666-682, April.
    16. Andrea BASTIANIN & Matteo MANERA, 2015. "How Does Stock Market Volatility React to Oil Shocks?," Departmental Working Papers 2015-09, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    17. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    18. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    19. Lutz Kilian & Xiaoqing Zhou, 2023. "The Econometrics of Oil Market VAR Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 65-95, Emerald Group Publishing Limited.
    20. Petrella, Ivan & Drechsel, Thomas & Antolin-Diaz, Juan, 2014. "Following the Trend: Tracking GDP when Long-Run Growth is Uncertain," CEPR Discussion Papers 10272, C.E.P.R. Discussion Papers.

    More about this item

    Keywords

    Energy Prices; Forecasting; Dynamic Factor model; Sparse Estimation; Penalized Maximum Likelihood.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bzn:wpaper:bemps83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: F. Marta L. Di Lascio or Alessandro Fedele (email available below). General contact details of provider: https://edirc.repec.org/data/feubzit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.