[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/boc/usug19/17.html
   My bibliography  Save this paper

Generalized method of moments estimation of linear dynamic panel-data models

Author

Listed:
  • Sebastian Kripfganz

    (University of Exeter Business School)

Abstract
In dynamic models with unobserved group-specific effects, the lagged dependent variable is an endogenous regressor by construction. The conventional fixed-effects estimator is biased and inconsistent under fixed-T asymptotics. To deal with this problem, "difference GMM" and "system GMM" estimators in the spirit of Arellano and Bond (1991, Review of Economic Studies), Arellano and Bover (1995, Journal of Econometrics), and Blundell and Bond (1998, Journal of Econometrics) are predominantly applied in practice. While Stata has the official commands xtabond and xtdpdsys—both are wrappers for xtdpd—the Stata community widely associates these methods with the xtabond2 command provided by Roodman (2009, Stata Journal). 10 years after Roodman's award winning Stata Journal article, this presentation revisits the GMM estimation of dynamic panel-data models in Stata. I present the new command, xtdpdgmm, that addresses some shortcomings of xtabond2 and adds further flexibility to the specification of the estimators. In particular, it allows to incorporate the Ahn and Schmidt (1995, Journal of Econometrics) nonlinear moment conditions that can improve the efficiency and robustness of the estimation. Besides the familiar one-step and two-step estimators, xtdpdgmm also provides the Hansen, Heaton, and Yaron (1996, Journal of Business & Economic Statistics) iterated GMM estimator. While it can be pedagogically useful to think about "system GMM" as a system of a level equation and an equation in first differences or forward-orthogonal deviations, I explain that the resulting estimator can still be regarded as a "level GMM" estimator with a set of transformed instruments. These transformed instruments can be obtained as a postestimation feature and used for subsequent specification tests, for example with the ivreg2 command suite of Baum, Schaffer, and Stillman (2003 and 2007, Stata Journal). I further address common pitfalls and frequently asked questions about the estimation of linear dynamic panel-data models.

Suggested Citation

  • Sebastian Kripfganz, 2019. "Generalized method of moments estimation of linear dynamic panel-data models," London Stata Conference 2019 17, Stata Users Group.
  • Handle: RePEc:boc:usug19:17
    as

    Download full text from publisher

    File URL: http://repec.org/usug2019/Kripfganz_uk19.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frank Windmeijer, 2018. "Testing Over- and Underidentification in Linear Models, with Applications to Dynamic Panel Data and Asset-Pricing Models," Bristol Economics Discussion Papers 18/696, School of Economics, University of Bristol, UK.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    4. Sanderson, Eleanor & Windmeijer, Frank, 2016. "A weak instrument F-test in linear IV models with multiple endogenous variables," Journal of Econometrics, Elsevier, vol. 190(2), pages 212-221.
    5. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    6. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    7. Kiviet, Jan F., 2020. "Microeconometric dynamic panel data methods: Model specification and selection issues," Econometrics and Statistics, Elsevier, vol. 13(C), pages 16-45.
    8. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    9. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    10. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    11. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    12. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hak Yeung & Jürgen Huber, 2022. "Further Evidence on China’s B&R Impact on Host Countries’ Quality of Institutions," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    2. Sebastian Kripfganz & Claudia Schwarz, 2019. "Estimation of linear dynamic panel data models with time‐invariant regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(4), pages 526-546, June.
    3. Osvaldo Lagares, 2016. "Capital, Economic Growth and Relative Income Differences in Latin America," Discussion Papers 16/03, Department of Economics, University of York.
    4. Jondeau, Eric & Le Bihan, Hervé, 2008. "Examining bias in estimators of linear rational expectations models under misspecification," Journal of Econometrics, Elsevier, vol. 143(2), pages 375-395, April.
    5. Sigmund, Michael & Ferstl, Robert, 2021. "Panel vector autoregression in R with the package panelvar," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 693-720.
    6. Sulistiyo K. Ardiyono & Arianto A. Patunru, 2022. "The impact of employment protection on FDI at different stages of economic development," The World Economy, Wiley Blackwell, vol. 45(12), pages 3679-3714, December.
    7. Nicolas Dias Gomes & Pedro André Cerqueira & Luís Alçada Almeida, 2013. "Determinants of Worldwide Software Piracy Losses," GEMF Working Papers 2013-19, GEMF, Faculty of Economics, University of Coimbra.
    8. Zheng, Xinye & Li, Fanghua & Song, Shunfeng & Yu, Yihua, 2013. "Central government's infrastructure investment across Chinese regions: A dynamic spatial panel data approach," China Economic Review, Elsevier, vol. 27(C), pages 264-276.
    9. Tadadjeu, Sosson & Njangang, Henri & Asongu, Simplice A. & Kamguia, Brice, 2023. "Natural resources, child mortality and governance quality in African countries," Resources Policy, Elsevier, vol. 83(C).
    10. Feldmann, Horst, 2012. "Banking deregulation around the world, 1970s to 2000s: The impact on unemployment," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 26-42.
    11. DELL'ANNO, Roberto & VILLA, Stefania, 2012. "Growth in Transition Countries: Big Bang versus Gradualism," CELPE Discussion Papers 122, CELPE - CEnter for Labor and Political Economics, University of Salerno, Italy.
    12. Claire Giordano, 2023. "Revisiting the real exchange rate misalignment‐economic growth nexus via the across‐sector misallocation channel," Review of International Economics, Wiley Blackwell, vol. 31(4), pages 1329-1384, September.
    13. Lamar Crombach & Frank Bohn, 2024. "Uninformed voters with (im)precise expectations: Explaining political budget cycle puzzles," Economics and Politics, Wiley Blackwell, vol. 36(1), pages 275-311, March.
    14. Fendel Tanja, 2016. "Migration and Regional Wage Disparities in Germany," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(1), pages 3-35, February.
    15. Emna Trabelsi, 2022. "Macroprudential Transparency and Price Stability in Emerging and Developing Countries," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 11(1), pages 105-129.
    16. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    17. W.N.W Azman‐Saini & Peter Smith, 2011. "Finance And Growth: New Evidence On The Role Of Insurance," South African Journal of Economics, Economic Society of South Africa, vol. 79(2), pages 111-127, June.
    18. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2003. "Instrumental variables and GMM: Estimation and testing," Stata Journal, StataCorp LP, vol. 3(1), pages 1-31, March.
    19. Monica Schuster & Miet Maertens, 2013. "8 Private Food Standards and Firm-Level Trade Effects: A Dynamic Analysis of the Peruvian Asparagus Export Sector," Frontiers of Economics and Globalization, in: Nontariff Measures with Market Imperfections: Trade and Welfare Implications, pages 187-213, Emerald Group Publishing Limited.
    20. Heid, Benedikt & Langer, Julian & Larch, Mario, 2012. "Income and democracy: Evidence from system GMM estimates," Economics Letters, Elsevier, vol. 116(2), pages 166-169.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:usug19:17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.