[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/bdi/wptemi/td_954_14.html
   My bibliography  Save this paper

Two EGARCH models and one fat tail

Author

Listed:
  • Michele Caivano

    (Bank of Italy)

  • Andrew Harvey

    (University of Cambridge)

Abstract
We compare two EGARCH models, which belong to a new class of models in which the dynamics are driven by the score of the conditional distribution of the observations. Models of this kind are called dynamic conditional score (DCS) models and their form facilitates the development of a comprehensive and relatively straightforward theory for the asymptotic distribution of the maximum likelihood estimator. The EGB2 distribution is light-tailed, but with a higher kurtosis than the normal distribution. Hence it is complementary to the fat-tailed t. The EGB2-EGARCH model gives a good fit to many exchange rate return series, prompting an investigation into the misleading conclusions liable to be drawn from tail index estimates.

Suggested Citation

  • Michele Caivano & Andrew Harvey, 2014. "Two EGARCH models and one fat tail," Temi di discussione (Economic working papers) 954, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:wptemi:td_954_14
    as

    Download full text from publisher

    File URL: http://www.bancaditalia.it/pubblicazioni/temi-discussione/2014/2014-0954/en_tema_954.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    3. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    4. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    5. Matteo Luciani & Libero Monteforte, 2012. "Uncertainty and Heterogeneity in factor models forecasting," Working Papers 5, Department of the Treasury, Ministry of the Economy and of Finance.
    6. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    7. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    8. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 133-152.
    9. Gabaix, Xavier & Ibragimov, Rustam, 2011. "Rank − 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 24-39.
    10. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    11. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    12. Ibragimov, Marat & Ibragimov, Rustam & Kattuman, Paul, 2013. "Emerging markets and heavy tails," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2546-2559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taneli M�kinen, 2014. "Informed trading and stock market efficiency," Temi di discussione (Economic working papers) 992, Bank of Italy, Economic Research and International Relations Area.
    2. Giuseppe Ferrero & Marcello Miccoli & Sergio Santoro, 2014. "Informational Effects of Monetary Policy," Temi di discussione (Economic working papers) 982, Bank of Italy, Economic Research and International Relations Area.
    3. Andres, Philipp, 2014. "Maximum likelihood estimates for positive valued dynamic score models; The DySco package," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 34-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    2. Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017. "Volatility Modeling with a Generalized t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
    3. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    4. Andrew Harvey & Rutger‐Jan Lange, 2018. "Modeling the Interactions between Volatility and Returns using EGARCH‐M," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 909-919, November.
    5. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    6. Ayala Astrid & Blazsek Szabolcs & Escribano Alvaro, 2023. "Anticipating extreme losses using score-driven shape filters," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(4), pages 449-484, September.
    7. Andrew Harvey & Rutger-Jan Lange, 2015. "Modeling the Interactions between Volatility and Returns," Cambridge Working Papers in Economics 1518, Faculty of Economics, University of Cambridge.
    8. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    9. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    10. Harvey, Andrew & Palumbo, Dario, 2023. "Score-driven models for realized volatility," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    12. Walter Distaso & Rustam Ibragimov & Alexander Semenov & Anton Skrobotov, 2020. "COVID-19: Tail Risk and Predictive Regressions," Papers 2009.02486, arXiv.org, revised Oct 2021.
    13. Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
    14. Hafner, Christian M. & Wang, Linqi, 2023. "A dynamic conditional score model for the log correlation matrix," Journal of Econometrics, Elsevier, vol. 237(2).
    15. Linton, Oliver & Wu, Jianbin, 2020. "A coupled component DCS-EGARCH model for intraday and overnight volatility," Journal of Econometrics, Elsevier, vol. 217(1), pages 176-201.
    16. Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017. "Time-Varying Transition Probabilities for Markov Regime Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
    17. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    18. Francisco (F.) Blasques & Andre (A.) Lucas & Andries van Vlodrop, 2017. "Finite Sample Optimality of Score-Driven Volatility Models," Tinbergen Institute Discussion Papers 17-111/III, Tinbergen Institute.
    19. Mohamed El Ghourabi & Asma Nani & Imed Gammoudi, 2021. "A value‐at‐risk computation based on heavy‐tailed distribution for dynamic conditional score models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2790-2799, April.
    20. Blasques, Francisco & Lucas, André & van Vlodrop, Andries C., 2021. "Finite Sample Optimality of Score-Driven Volatility Models: Some Monte Carlo Evidence," Econometrics and Statistics, Elsevier, vol. 19(C), pages 47-57.

    More about this item

    Keywords

    exchange rates; heavy tails; Hill�s estimator; score; robustness; EGB2; Student�s t; tail index;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_954_14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.