Targeting policy-compliers with machine learning: an application to a tax rebate programme in Italy
Author
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Aaron Chalfin & Oren Danieli & Andrew Hillis & Zubin Jelveh & Michael Luca & Jens Ludwig & Sendhil Mullainathan, 2016. "Productivity and Selection of Human Capital with Machine Learning," American Economic Review, American Economic Association, vol. 106(5), pages 124-127, May.
- Susan Athey & Guido W. Imbens, 2017.
"The State of Applied Econometrics: Causality and Policy Evaluation,"
Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
- Susan Athey & Guido Imbens, 2016. "The State of Applied Econometrics - Causality and Policy Evaluation," Papers 1607.00699, arXiv.org.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Tullio Jappelli & Luigi Pistaferri, 2014.
"Fiscal Policy and MPC Heterogeneity,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 6(4), pages 107-136, October.
- Tullio Jappelli & Luigi Pistaferri, 2012. "Fiscal Policy and MPC Heterogeneity," CSEF Working Papers 325, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy, revised 18 Dec 2012.
- Jappelli, Tullio & Pistaferri, Luigi, 2013. "Fiscal Policy and MPC Heterogeneity," CEPR Discussion Papers 9333, C.E.P.R. Discussion Papers.
- Jappelli, Tullio & Pistaferri, Luigi, 2013. "Fiscal policy and MPC heterogeneity," CFS Working Paper Series 2013/14, Center for Financial Studies (CFS).
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
- Andrea Neri & Concetta Rondinelli & Filippo Scoccianti, 2017. "Household spending out of a tax rebate: Italian ��80 tax bonus�," Questioni di Economia e Finanza (Occasional Papers) 379, Bank of Italy, Economic Research and International Relations Area.
- Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018.
"Human Decisions and Machine Predictions,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
- Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2017. "Human Decisions and Machine Predictions," NBER Working Papers 23180, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Neri, Andrea & Rondinelli, Concetta & Scoccianti, Filippo, 2017. "Household spending out of a tax rebate: Italian “€80 tax bonus”," Working Paper Series 2099, European Central Bank.
- Jonah E. Rockoff & Brian A. Jacob & Thomas J. Kane & Douglas O. Staiger, 2011.
"Can You Recognize an Effective Teacher When You Recruit One?,"
Education Finance and Policy, MIT Press, vol. 6(1), pages 43-74, January.
- Jonah E. Rockoff & Brian A. Jacob & Thomas J. Kane & Douglas O. Staiger, 2008. "Can You Recognize an Effective Teacher When You Recruit One?," NBER Working Papers 14485, National Bureau of Economic Research, Inc.
- Dana Chandler & Steven D. Levitt & John A. List, 2011. "Predicting and Preventing Shootings among At-Risk Youth," American Economic Review, American Economic Association, vol. 101(3), pages 288-292, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andreas Joseph, 2019.
"Parametric inference with universal function approximators,"
Papers
1903.04209, arXiv.org, revised Oct 2020.
- Joseph, Andreas, 2019. "Parametric inference with universal function approximators," Bank of England working papers 784, Bank of England, revised 22 Jul 2020.
- Concetta Rondinelli & Roberta Zizza, 2020. "Spend today or spend tomorrow? The role of inflation expectations in consumer behaviour," Temi di discussione (Economic working papers) 1276, Bank of Italy, Economic Research and International Relations Area.
- Aiello, Francesco & Albanese, Giuseppe & Piselli, Paolo, 2019. "Good value for public money? The case of R&D policy," Journal of Policy Modeling, Elsevier, vol. 41(6), pages 1057-1076.
- Michele Rabasco & Pietro Battiston, 2023. "Predicting the deterrence effect of tax audits. A machine learning approach," Metroeconomica, Wiley Blackwell, vol. 74(3), pages 531-556, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andini, Monica & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Salvestrini, Viola, 2018. "Targeting with machine learning: An application to a tax rebate program in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 86-102.
- de Blasio, Guido & D'Ignazio, Alessio & Letta, Marco, 2022. "Gotham city. Predicting ‘corrupted’ municipalities with machine learning," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Guido de Blasio & Alessio D'Ignazio & Marco Letta, 2020. "Predicting Corruption Crimes with Machine Learning. A Study for the Italian Municipalities," Working Papers 16/20, Sapienza University of Rome, DISS.
- Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
- Falco J. Bargagli Stoffi & Kenneth De Beckker & Joana E. Maldonado & Kristof De Witte, 2021. "Assessing Sensitivity of Machine Learning Predictions.A Novel Toolbox with an Application to Financial Literacy," Papers 2102.04382, arXiv.org.
- Francesco Decarolis & Cristina Giorgiantonio, 2020. "Corruption red flags in public procurement: new evidence from Italian calls for tenders," Questioni di Economia e Finanza (Occasional Papers) 544, Bank of Italy, Economic Research and International Relations Area.
- Battiston, Pietro & Gamba, Simona & Santoro, Alessandro, 2024. "Machine learning and the optimization of prediction-based policies," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
- McKenzie, David & Sansone, Dario, 2017.
"Man vs. Machine in Predicting Successful Entrepreneurs: Evidence from a Business Plan Competition in Nigeria,"
CEPR Discussion Papers
12523, C.E.P.R. Discussion Papers.
- Mckenzie,David J. & Sansone,Dario & Mckenzie,David J. & Sansone,Dario, 2017. "Man vs. machine in predicting successful entrepreneurs : evidence from a business plan competition in Nigeria," Policy Research Working Paper Series 8271, The World Bank.
- Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022.
"Machine learning in the service of policy targeting: The case of public credit guarantees,"
Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
- Monica Andini & Michela Boldrini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Andrea Paladini, 2019. "Machine learning in the service of policy targeting: the case of public credit guarantees," Temi di discussione (Economic working papers) 1206, Bank of Italy, Economic Research and International Relations Area.
- McKenzie, David & Sansone, Dario, 2019. "Predicting entrepreneurial success is hard: Evidence from a business plan competition in Nigeria," Journal of Development Economics, Elsevier, vol. 141(C).
- Andreas Fuster & Paul Goldsmith‐Pinkham & Tarun Ramadorai & Ansgar Walther, 2022.
"Predictably Unequal? The Effects of Machine Learning on Credit Markets,"
Journal of Finance, American Finance Association, vol. 77(1), pages 5-47, February.
- Goldsmith-Pinkham, Paul & Walther, Ansgar, 2017. "Predictably Unequal? The Effects of Machine Learning on Credit Markets," CEPR Discussion Papers 12448, C.E.P.R. Discussion Papers.
- Delprato, Marcos & Frola, Alessia & Antequera, Germán, 2022. "Indigenous and non-Indigenous proficiency gaps for out-of-school and in-school populations: A machine learning approach," International Journal of Educational Development, Elsevier, vol. 93(C).
- Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Pietro Battiston & Simona Gamba & Alessandro Santoro, 2020. "Optimizing Tax Administration Policies with Machine Learning," Working Papers 436, University of Milano-Bicocca, Department of Economics, revised Mar 2020.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Songul Cinaroglu, 2020. "Modelling unbalanced catastrophic health expenditure data by using machine‐learning methods," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 168-181, October.
- Anthony Niblett, 2018. "Regulatory Reform in Ontario: Machine Learning and Regulation," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 507, March.
- Isil Erel & Léa H Stern & Chenhao Tan & Michael S Weisbach, 2021.
"Selecting Directors Using Machine Learning,"
NBER Chapters, in: Big Data: Long-Term Implications for Financial Markets and Firms, pages 3226-3264,
National Bureau of Economic Research, Inc.
- Isil Erel & Léa H Stern & Chenhao Tan & Michael S Weisbach, 2021. "Selecting Directors Using Machine Learning [The role of boards of directors in corporate governance: A conceptual framework and survey]," The Review of Financial Studies, Society for Financial Studies, vol. 34(7), pages 3226-3264.
- Isil Erel & Léa H. Stern & Chenhao Tan & Michael S. Weisbach, 2018. "Selecting Directors Using Machine Learning," NBER Working Papers 24435, National Bureau of Economic Research, Inc.
- Erel, Isil & Stern, Lea Henny & Tan, Chenhao & Weisbach, Michael S., 2018. "Selecting Directors Using Machine Learning," Working Paper Series 2018-05, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
- Sean Tanner & Jenna Terrell & Emily Vislosky & Jonathan Gellar & Brian Gill, "undated". "Predicting Early Fall Student Enrollment in the School District of Philadelphia," Mathematica Policy Research Reports 63a18bf538bd41f98d72ff91d, Mathematica Policy Research.
- Yong Bian & Xiqian Wang & Qin Zhang, 2023. "How Does China's Household Portfolio Selection Vary with Financial Inclusion?," Papers 2311.01206, arXiv.org.
More about this item
Keywords
machine learning; prediction; programme evaluation; fiscal stimulus;All these keywords.
JEL classification:
- C5 - Mathematical and Quantitative Methods - - Econometric Modeling
- H3 - Public Economics - - Fiscal Policies and Behavior of Economic Agents
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2018-01-08 (Big Data)
- NEP-CMP-2018-01-08 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_1158_17. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.