[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/bge/wpaper/819.html
   My bibliography  Save this paper

Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models

Author

Listed:
  • Raffaella Giacomini
  • Barbara Rossi
Abstract
This review provides an overview of forecasting methods that can help researchers forecast in the presence of non-stationarities caused by instabilities. The emphasis of the review is both theoretical and applied, and provides several examples of interest to economists. We show that modeling instabilities can help, but it depends on how they are modeled. We also show how to robustify a model against instabilities.

Suggested Citation

  • Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
  • Handle: RePEc:bge:wpaper:819
    as

    Download full text from publisher

    File URL: https://www.barcelonagse.eu/sites/default/files/working_paper_pdfs/819.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    3. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    4. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    5. Malin Adolfson & Jesper Linde & Mattias Villani, 2007. "Forecasting Performance of an Open Economy DSGE Model," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 289-328.
    6. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
    7. Giraitis, Liudas & Kapetanios, George & Price, Simon, 2013. "Adaptive forecasting in the presence of recent and ongoing structural change," Journal of Econometrics, Elsevier, vol. 177(2), pages 153-170.
    8. Andrew Foerster & Juan F. Rubio‐Ramírez & Daniel F. Waggoner & Tao Zha, 2016. "Perturbation methods for Markov‐switching dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 7(2), pages 637-669, July.
    9. Bates, Brandon J. & Plagborg-Møller, Mikkel & Stock, James H. & Watson, Mark W., 2013. "Consistent factor estimation in dynamic factor models with structural instability," Journal of Econometrics, Elsevier, vol. 177(2), pages 289-304.
    10. Fabio Canova & Filippo Ferroni, 2011. "Multiple filtering devices for the estimation of cyclical DSGE models," Quantitative Economics, Econometric Society, vol. 2(1), pages 73-98, March.
    11. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    12. Raffaella Giacomini & Barbara Rossi, 2006. "How Stable is the Forecasting Performance of the Yield Curve for Output Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 783-795, December.
    13. Robertson, John C & Tallman, Ellis W & Whiteman, Charles H, 2005. "Forecasting Using Relative Entropy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 383-401, June.
    14. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    15. Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
    16. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(1), pages 147-180.
    17. Barbara Rossi & Tatevik Sekhposyan, 2016. "Forecast Rationality Tests in the Presence of Instabilities, with Applications to Federal Reserve and Survey Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 507-532, April.
    18. Raffaella Giacomini & Barbara Rossi, 2009. "Detecting and Predicting Forecast Breakdowns," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(2), pages 669-705.
    19. Troy Davig & Eric M. Leeper, 2007. "Generalizing the Taylor Principle," American Economic Review, American Economic Association, vol. 97(3), pages 607-635, June.
    20. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    21. Wieland, Volker & Cwik, Tobias & Müller, Gernot J. & Schmidt, Sebastian & Wolters, Maik, 2012. "A new comparative approach to macroeconomic modeling and policy analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 523-541.
    22. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    23. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.
    24. Eickmeier, Sandra & Lemke, Wolfgang & Marcellino, Massimiliano, 2011. "Classical time-varying FAVAR models - estimation, forecasting and structural analysis," Discussion Paper Series 1: Economic Studies 2011,04, Deutsche Bundesbank.
    25. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    26. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    27. Timothy Cogley & Argia M. Sbordone, 2006. "Trend inflation and inflation persistence in the New Keynesian Phillips curve," Staff Reports 270, Federal Reserve Bank of New York.
    28. Cosmin L. Ilut & Martin Schneider, 2014. "Ambiguous Business Cycles," American Economic Review, American Economic Association, vol. 104(8), pages 2368-2399, August.
    29. Graham Elliott & Ulrich K. Muller, 2006. "Efficient Tests for General Persistent Time Variation in Regression Coefficients," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 907-940.
    30. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    31. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    32. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    33. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    34. Breitung, Jörg & Eickmeier, Sandra, 2011. "Testing for structural breaks in dynamic factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 71-84, July.
    35. Andrade, P. & Ghysels, E. & Idier, J., 2012. "Tails of Inflation Forecasts and Tales of Monetary Policy," Working papers 407, Banque de France.
    36. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    37. Rossi, Barbara & Sekhposyan, Tatevik, 2013. "Conditional predictive density evaluation in the presence of instabilities," Journal of Econometrics, Elsevier, vol. 177(2), pages 199-212.
    38. Raffaella Giacomini & Barbara Rossi, 2016. "Model Comparisons In Unstable Environments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(2), pages 369-392, May.
    39. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    40. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    41. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    42. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    43. Rossi, Barbara & Sekhposyan, Tatevik, 2014. "Evaluating predictive densities of US output growth and inflation in a large macroeconomic data set," International Journal of Forecasting, Elsevier, vol. 30(3), pages 662-682.
    44. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    45. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    46. Ploberger, Werner & Kramer, Walter, 1992. "The CUSUM Test with OLS Residuals," Econometrica, Econometric Society, vol. 60(2), pages 271-285, March.
    47. Inoue, Atsushi, 2001. "Testing For Distributional Change In Time Series," Econometric Theory, Cambridge University Press, vol. 17(1), pages 156-187, February.
    48. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    49. Atsushi Inoue, "undated". "Testing Change in Time Series," Computing in Economics and Finance 1997 7, Society for Computational Economics.
    50. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
    51. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    52. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013. "Real-Time Inflation Forecasting in a Changing World," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
    53. Francesca Monti, 2010. "Combining Judgment and Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(8), pages 1641-1662, December.
    54. Francesco Bianchi, 2013. "Regime Switches, Agents' Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 463-490.
    55. Atsushi Inoue & Barbara Rossi, 2011. "Identifying the Sources of Instabilities in Macroeconomic Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1186-1204, November.
    56. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    57. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    58. Roger E. A. Farmer & Daniel F. Waggoner & Tao Zha, 2009. "Indeterminacy in a forward‐looking regime switching model," International Journal of Economic Theory, The International Society for Economic Theory, vol. 5(1), pages 69-84, March.
    59. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Working Papers 334, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    60. Jonathan H. Wright, 2009. "Forecasting US inflation by Bayesian model averaging," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 131-144.
    61. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    62. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    63. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    64. Giacomini, Raffaella & Ragusa, Giuseppe, 2014. "Theory-coherent forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 145-155.
    65. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    66. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    67. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    68. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    69. Wolden Bache, Ida & Sofie Jore, Anne & Mitchell, James & Vahey, Shaun P., 2011. "Combining VAR and DSGE forecast densities," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1659-1670, October.
    70. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Journal of Econometrics, Elsevier, vol. 163(2), pages 215-230, August.
    71. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    72. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    73. James Mitchell & Kenneth F. Wallis, 2011. "Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 1023-1040, September.
    74. Rochelle M. Edge & Refet S. Gurkaynak, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
    75. Raffaella Giacomini, 2015. "Economic theory and forecasting: lessons from the literature," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 22-41, June.
    76. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    77. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    78. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 5, pages 197-284, Elsevier.
    79. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    80. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    81. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    82. repec:hal:journl:peer-00834423 is not listed on IDEAS
    83. Ploberger, Werner & Kramer, Walter & Kontrus, Karl, 1989. "A new test for structural stability in the linear regression model," Journal of Econometrics, Elsevier, vol. 40(2), pages 307-318, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cardani, Roberta & Paccagnini, Alessia & Villa, Stefania, 2019. "Forecasting with instabilities: An application to DSGE models with financial frictions," Journal of Macroeconomics, Elsevier, vol. 61(C), pages 1-1.
    2. Graham Elliott & Allan Timmermann, 2016. "Forecasting in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
    3. Ambrocio, Gene, 2017. "The real effects of overconfidence and fundamental uncertainty shocks," Research Discussion Papers 37, Bank of Finland.
    4. Alessandro Casini, 2021. "Theory of Evolutionary Spectra for Heteroskedasticity and Autocorrelation Robust Inference in Possibly Misspecified and Nonstationary Models," Papers 2103.02981, arXiv.org, revised Aug 2024.
    5. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Papers 1805.03807, arXiv.org.
    6. repec:zbw:bofrdp:037 is not listed on IDEAS
    7. repec:zbw:bofrdp:2017_037 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    2. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    3. Rossi, Barbara & Sekhposyan, Tatevik, 2014. "Evaluating predictive densities of US output growth and inflation in a large macroeconomic data set," International Journal of Forecasting, Elsevier, vol. 30(3), pages 662-682.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    6. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    7. Raffaella Giacomini, 2014. "Economic theory and forecasting: lessons from the literature," CeMMAP working papers 41/14, Institute for Fiscal Studies.
    8. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    9. Rossi, Barbara & Sekhposyan, Tatevik, 2019. "Alternative tests for correct specification of conditional predictive densities," Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
    10. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    11. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    12. Yousuf, Kashif & Ng, Serena, 2021. "Boosting high dimensional predictive regressions with time varying parameters," Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
    13. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    14. Raffaella Giacomini, 2015. "Economic theory and forecasting: lessons from the literature," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 22-41, June.
    15. Peter McAdam & Anders Warne, 2024. "Density forecast combinations: The real‐time dimension," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
    16. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic forecast accuracy in a data‐rich environment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
    17. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    18. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    19. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    20. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.

    More about this item

    Keywords

    forecasting; instabilities; structural breaks;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bge:wpaper:819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bruno Guallar (email available below). General contact details of provider: https://edirc.repec.org/data/bargses.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.