[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/60-17.html
   My bibliography  Save this paper

Individual counterfactuals with multidimensional unobserved heterogeneity

Author

Listed:
  • Richard Blundell
  • Dennis Kristensen
  • Rosa Matzkin
Abstract
New nonparametric methods that identify and estimate counterfactuals for individuals, when each is characterized by a vector of unobserved characteristics, are developed and applied to estimate systems of individual consumer demand and welfare measures. The unobserved characteristics are allowed to enter in unrestricted ways. Identification is delivered through two fundamental assumptions: First, the system is invertible in the vector of unobserved heterogeneity. Second, there exist external, individual-specific, covariates that are related to the unobserved heterogeneity and do not enter directly into the system of interest. The observed external variables can be either discrete or continuously distributed. Estimators based on the identifying restrictions are developed and their asymptotic properties derived. Using UK micro data on consumer demand, we apply the methods to estimate individual demand counterfactuals subject to revealed preference inequalities.

Suggested Citation

  • Richard Blundell & Dennis Kristensen & Rosa Matzkin, 2017. "Individual counterfactuals with multidimensional unobserved heterogeneity," CeMMAP working papers 60/17, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:60/17
    DOI: 10.1920/wp.cem.2017.6017
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP6017.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2017.6017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Steven T. Berry & Philip A. Haile, 2018. "Identification of Nonparametric Simultaneous Equations Models With a Residual Index Structure," Econometrica, Econometric Society, vol. 86(1), pages 289-315, January.
    2. Flavio Cunha & James J. Heckman & Susanne M. Schennach, 2010. "Estimating the Technology of Cognitive and Noncognitive Skill Formation," Econometrica, Econometric Society, vol. 78(3), pages 883-931, May.
    3. Yuichi Kitamura & Jörg Stoye, 2013. "Nonparametric analysis of random utility models: testing," CeMMAP working papers 36/13, Institute for Fiscal Studies.
    4. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
    5. Varian, Hal R, 1982. "The Nonparametric Approach to Demand Analysis," Econometrica, Econometric Society, vol. 50(4), pages 945-973, July.
    6. repec:hal:spmain:info:hdl:2441/4c5431jp6o888pdrcs0fuirl40 is not listed on IDEAS
    7. Steven Berry & Amit Gandhi & Philip Haile, 2013. "Connected Substitutes and Invertibility of Demand," Econometrica, Econometric Society, vol. 81(5), pages 2087-2111, September.
    8. Stefan Hoderlein & Jörg Stoye, 2014. "Revealed Preferences in a Heterogeneous Population," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 197-213, May.
    9. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    10. Qi Li & Jeffrey Scott Racine, 2006. "Density Estimation, from Nonparametric Econometrics: Theory and Practice," Introductory Chapters, in: Nonparametric Econometrics: Theory and Practice, Princeton University Press.
    11. Donald J. Brown & Rosa L. Matzkin, 1998. "Estimation of Nonparametric Functions in Simultaneous Equations Models, with an Application to Consumer Demand," Cowles Foundation Discussion Papers 1175, Cowles Foundation for Research in Economics, Yale University.
    12. Walter Beckert & Richard Blundell, 2008. "Heterogeneity and the Non-Parametric Analysis of Consumer Choice: Conditions for Invertibility," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(4), pages 1069-1080.
    13. Jerry A. Hausman & Whitney K. Newey, 2017. "Nonparametric Welfare Analysis," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 521-546, September.
    14. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82, pages 1749-1797, September.
    15. Donald J. Brown & Rahul Deb & Marten H. Wegkamp, 2003. "Tests of Independence in Separable Econometric Models: Theory and Application," Cowles Foundation Discussion Papers 1395R, Cowles Foundation for Research in Economics, Yale University, revised Oct 2006.
    16. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    17. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    18. Richard W. Blundell & Martin Browning & Ian A. Crawford, 2003. "Nonparametric Engel Curves and Revealed Preference," Econometrica, Econometric Society, vol. 71(1), pages 205-240, January.
    19. Stefan Hoderlein & Jörg Stoye, 2015. "Testing stochastic rationality and predicting stochastic demand: the case of two goods," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 313-328, October.
    20. Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, September.
    21. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    22. Richard Blundell & Joel Horowitz & Matthias Parey, 2017. "Nonparametric Estimation of a Nonseparable Demand Function under the Slutsky Inequality Restriction," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 291-304, May.
    23. Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2015. "Vector quantile regression: an optimal transport approach," CeMMAP working papers 58/15, Institute for Fiscal Studies.
    24. C. Lanier Benkard & Steven Berry, 2006. "On the Nonparametric Identification of Nonlinear Simultaneous Equations Models: Comment on Brown (1983) and Roehrig (1988)," Econometrica, Econometric Society, vol. 74(5), pages 1429-1440, September.
    25. Rosa L. Matzkin, 2008. "Identification in Nonparametric Simultaneous Equations Models," Econometrica, Econometric Society, vol. 76(5), pages 945-978, September.
    26. Jerry A. Hausman & Whitney K. Newey, 2016. "Individual Heterogeneity and Average Welfare," Econometrica, Econometric Society, vol. 84, pages 1225-1248, May.
    27. Majid M. Al-Sadoon, 2014. "A general theory of rank testing," Economics Working Papers 1411, Department of Economics and Business, Universitat Pompeu Fabra, revised Feb 2015.
    28. Blundell, Richard & Kristensen, Dennis & Matzkin, Rosa, 2014. "Bounding quantile demand functions using revealed preference inequalities," Journal of Econometrics, Elsevier, vol. 179(2), pages 112-127.
    29. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    30. Richard Blundell & Rosa L. Matzkin, 2014. "Control functions in nonseparable simultaneous equations models," Quantitative Economics, Econometric Society, vol. 5, pages 271-295, July.
    31. Daniel McFadden, 2005. "Revealed stochastic preference: a synthesis," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 245-264, August.
    32. Rosa L. Matzkin, 2015. "Estimation of Nonparametric Models With Simultaneity," Econometrica, Econometric Society, vol. 83, pages 1-66, January.
    33. Laurens Cherchye & Ian Crawford & Bram De Rock & Frederic Vermeulen, 2009. "The revealed preference approach to demand," ULB Institutional Repository 2013/132522, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuichi Kitamura & Jörg Stoye, 2018. "Nonparametric Analysis of Random Utility Models," Econometrica, Econometric Society, vol. 86(6), pages 1883-1909, November.
    2. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," NBER Working Papers 29305, National Bureau of Economic Research, Inc.
    3. Haruki Kono, 2024. "Local Identification in Instrumental Variable Multivariate Quantile Regression Models," Papers 2401.11422, arXiv.org, revised Jun 2024.
    4. Roy Allen & John Rehbeck, 2020. "Counterfactual and Welfare Analysis with an Approximate Model," Papers 2009.03379, arXiv.org.
    5. Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023. "Prices, profits, proxies, and production," Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
    6. Allen, Roy, 2022. "Injectivity and the law of demand," Economics Letters, Elsevier, vol. 215(C).
    7. Christopher Dobronyi & Christian Gouri'eroux, 2020. "Consumer Theory with Non-Parametric Taste Uncertainty and Individual Heterogeneity," Papers 2010.13937, arXiv.org, revised Jan 2021.
    8. Myunghyun Song, 2024. "Identification and Inference in General Bunching Designs," Papers 2411.03625, arXiv.org, revised Nov 2024.
    9. Hubner, Stefan, 2023. "Identification of unobserved distribution factors and preferences in the collective household model," Journal of Econometrics, Elsevier, vol. 234(1), pages 301-326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hubner, Stefan, 2023. "Identification of unobserved distribution factors and preferences in the collective household model," Journal of Econometrics, Elsevier, vol. 234(1), pages 301-326.
    2. Ian Crawford & Matthew Polisson, 2015. "Demand analysis with partially observed prices," IFS Working Papers W15/16, Institute for Fiscal Studies.
    3. Sam Cosaert & Thomas Demuynck, 2018. "Nonparametric Welfare and Demand Analysis with Unobserved Individual Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 349-361, May.
    4. Hubner, Stefan, 2016. "Topics in nonparametric identification and estimation," Other publications TiSEM 08fce56b-3193-46e0-871b-0, Tilburg University, School of Economics and Management.
    5. Cherchye, Laurens & Demuynck, Thomas & Rock, Bram De, 2019. "Bounding counterfactual demand with unobserved heterogeneity and endogenous expenditures," Journal of Econometrics, Elsevier, vol. 211(2), pages 483-506.
    6. Blundell, Richard & Kristensen, Dennis & Matzkin, Rosa, 2014. "Bounding quantile demand functions using revealed preference inequalities," Journal of Econometrics, Elsevier, vol. 179(2), pages 112-127.
    7. Yuichi Kitamura & Jörg Stoye, 2013. "Nonparametric analysis of random utility models: testing," CeMMAP working papers 36/13, Institute for Fiscal Studies.
    8. Yuichi Kitamura & Jörg Stoye, 2018. "Nonparametric Analysis of Random Utility Models," Econometrica, Econometric Society, vol. 86(6), pages 1883-1909, November.
    9. Stefan Hoderlein & Jörg Stoye, 2015. "Testing stochastic rationality and predicting stochastic demand: the case of two goods," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 313-328, October.
    10. Steven T. Berry & Philip A. Haile, 2024. "Nonparametric Identification of Differentiated Products Demand Using Micro Data," Econometrica, Econometric Society, vol. 92(4), pages 1135-1162, July.
    11. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    12. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    13. Allen, Roy, 2022. "Injectivity and the law of demand," Economics Letters, Elsevier, vol. 215(C).
    14. Matzkin, Rosa L., 2016. "On independence conditions in nonseparable models: Observable and unobservable instruments," Journal of Econometrics, Elsevier, vol. 191(2), pages 302-311.
    15. Jerry A. Hausman & Whitney K. Newey, 2016. "Individual Heterogeneity and Average Welfare," Econometrica, Econometric Society, vol. 84, pages 1225-1248, May.
    16. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    17. Victor Chernozhukov & Jerry A. Hausman & Whitney K. Newey, 2019. "Demand Analysis with Many Prices," NBER Working Papers 26424, National Bureau of Economic Research, Inc.
    18. Jerry Hausman & Whitney K. Newey, 2014. "Individual Heterogeneity and Average Welfare," CeMMAP working papers 42/14, Institute for Fiscal Studies.
    19. Cherchye, Laurens & Demuynck, Thomas & De Rock, Bram, 2018. "Transitivity of preferences: when does it matter?," Theoretical Economics, Econometric Society, vol. 13(3), September.
    20. Hoderlein, Stefan & Holzmann, Hajo & Meister, Alexander, 2017. "The triangular model with random coefficients," Journal of Econometrics, Elsevier, vol. 201(1), pages 144-169.

    More about this item

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:60/17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.