[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.14063.html
   My bibliography  Save this paper

DiffSTOCK: Probabilistic relational Stock Market Predictions using Diffusion Models

Author

Listed:
  • Divyanshu Daiya
  • Monika Yadav
  • Harshit Singh Rao
Abstract
In this work, we propose an approach to generalize denoising diffusion probabilistic models for stock market predictions and portfolio management. Present works have demonstrated the efficacy of modeling interstock relations for market time-series forecasting and utilized Graph-based learning models for value prediction and portfolio management. Though convincing, these deterministic approaches still fall short of handling uncertainties i.e., due to the low signal-to-noise ratio of the financial data, it is quite challenging to learn effective deterministic models. Since the probabilistic methods have shown to effectively emulate higher uncertainties for time-series predictions. To this end, we showcase effective utilisation of Denoising Diffusion Probabilistic Models (DDPM), to develop an architecture for providing better market predictions conditioned on the historical financial indicators and inter-stock relations. Additionally, we also provide a novel deterministic architecture MaTCHS which uses Masked Relational Transformer(MRT) to exploit inter-stock relations along with historical stock features. We demonstrate that our model achieves SOTA performance for movement predication and Portfolio management.

Suggested Citation

  • Divyanshu Daiya & Monika Yadav & Harshit Singh Rao, 2024. "DiffSTOCK: Probabilistic relational Stock Market Predictions using Diffusion Models," Papers 2403.14063, arXiv.org.
  • Handle: RePEc:arx:papers:2403.14063
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.14063
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.14063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.