(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/ags/uguewp/244742.html
   My bibliography  Save this paper

Parametric And Non- Parametric Crop Yield Distributions and Their Effects on All-Risk Crop Insurance Premiums

Author

Listed:
  • Turvey, Calum
  • Zhao, Jinhua
Abstract
Normal, gamma and beta distributions are applied to 609 crop yield histories of Ontario farmers to determine which, if any, best describe crop yields. In addition, a distribution free non-parametric kernel estimator was applied to the same data to determine its efficiency in premium estimation relative to the three parametric forms. Results showed that crop yields are most likely to be described by a beta distribution but only for 50% of those tested. In terms of efficiency in premium estimation, minimum error criteria supports use of a kernel estimator for premium setting. However, this gain in efficiency comes at the expense of added complexity.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Turvey, Calum & Zhao, Jinhua, 1999. "Parametric And Non- Parametric Crop Yield Distributions and Their Effects on All-Risk Crop Insurance Premiums," Working Papers 244742, University of Guelph, Department of Food, Agricultural and Resource Economics.
  • Handle: RePEc:ags:uguewp:244742
    DOI: 10.22004/ag.econ.244742
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/244742/files/guelph-wp-99-05.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.244742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard H. Day, 1965. "Probability Distributions of Field Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 47(3), pages 713-741.
    2. Gallagher, Paul W., 1986. "U. S. Corn Yield Capacity and Probability: Estimation and Forecasting with Non-Symmetric Disturbances," Staff General Research Papers Archive 10780, Iowa State University, Department of Economics.
    3. Carl H. Nelson & Paul V. Preckel, 1989. "The Conditional Beta Distribution as a Stochastic Production Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(2), pages 370-378.
    4. Rulon D. Pope & Rod F. Ziemer, 1984. "Stochastic Efficiency, Normality, and Sampling Errors in Agricultural Risk Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(1), pages 31-40.
    5. Antle, John M, 1983. "Testing the Stochastic Structure of Production: A Flexible Moment-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(3), pages 192-201, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    2. Ozaki, Vitor & Campos, Rogério, 2017. "Reduzindo a Incerteza no Mercado de Seguros: Uma Abordagem via Informações de Sensoriamento Remoto e Atuária," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 71(4), December.
    3. Qiujie Zheng & H. Holly Wang & Qing Hua Shi, 2014. "Estimating bivariate yield distributions and crop insurance premiums using nonparametric methods," Applied Economics, Taylor & Francis Journals, vol. 46(18), pages 2108-2118, June.
    4. Tor N. Tolhurst & Alan P. Ker, 2015. "On Technological Change in Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 137-158.
    5. Upmanu Lall & Naresh Devineni & Yasir Kaheil, 2016. "An Empirical, Nonparametric Simulator for Multivariate Random Variables with Differing Marginal Densities and Nonlinear Dependence with Hydroclimatic Applications," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 57-73, January.
    6. Vitor A. Ozaki & Sujit K. Ghosh & Barry K. Goodwin & Ricardo Shirota, 2008. "Spatio-Temporal Modeling of Agricultural Yield Data with an Application to Pricing Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(4), pages 951-961.
    7. Santeramo, Fabio Gaetano & Maccarone, Irene, 2022. "Analisi storica delle rese agricole e la variabilità del clima: Analisi dei dati italiani sui cereali [Historical crop yields and climate variability: analysis of Italian cereal data]," MPRA Paper 114135, University Library of Munich, Germany, revised 04 Aug 2022.
    8. Vitor Ozaki & Barry Goodwin & Ricardo Shirota, 2008. "Parametric and nonparametric statistical modelling of crop yield: implications for pricing crop insurance contracts," Applied Economics, Taylor & Francis Journals, vol. 40(9), pages 1151-1164.
    9. Lanoue, Christopher & Sherrick, Bruce J. & Woodard, Joshua D. & Paulson, Nicholas D., 2010. "Evaluating Yield Models for Crop Insurance Rating," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 61761, Agricultural and Applied Economics Association.
    10. Woodard, Joshua D. & Chiu Verteramo, Leslie & Miller, Alyssa P., 2015. "Adaptation of U.S. Agricultural Production to Drought and Climate Change," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205903, Agricultural and Applied Economics Association.
    11. Lee, Sangjun & Zhao, Jinhua & Thornsbury, Suzanne, 2013. "Extreme Events and Land Use Decisions under Climate Change in Tart Cherry Industry in Michigan," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150568, Agricultural and Applied Economics Association.
    12. Ghahremanzadeh, Mohammad & Mohammadrezaei, Rassul & Dashti, Ghader & Ainollahi, Moharram, 2018. "Designing a whole-farm revenue insurance for agricultural crops in Zanjan province of Iran," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 17(02), January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    2. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    3. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    4. Xiaodong Du & David A. Hennessy & Cindy L. Yu, 2012. "Testing Day's Conjecture that More Nitrogen Decreases Crop Yield Skewness," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(1), pages 225-237.
    5. Woodard, Joshua D. & Chiu Verteramo, Leslie & Miller, Alyssa P., 2015. "Adaptation of U.S. Agricultural Production to Drought and Climate Change," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205903, Agricultural and Applied Economics Association.
    6. Christopher N. Boyer & B. Wade Brorsen & Emmanuel Tumusiime, 2015. "Modeling skewness with the linear stochastic plateau model to determine optimal nitrogen rates," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 1-10, January.
    7. Nolan, Elizabeth & Santos, Paulo, 2012. "Insurance premiums and GM traits," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 125942, International Association of Agricultural Economists.
    8. Ghahremanzadeh, Mohammad & Mohammadrezaei, Rassul & Dashti, Ghader & Ainollahi, Moharram, 2018. "Designing a whole-farm revenue insurance for agricultural crops in Zanjan province of Iran," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 17(02), January.
    9. Hao, Jianqiang & Bathke, Arne & Skees, Jerry R., 2005. "Modeling the Tail Distribution and Ratemaking: An Application of Extreme Value Theory," 2005 Annual meeting, July 24-27, Providence, RI 19190, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Nauges, Céline & Bougherara, Douadia & Koussoubé, Estelle, 2021. "Fertilizer use and risk: New evidence from Sub-Saharan Africa," TSE Working Papers 21-1266, Toulouse School of Economics (TSE).
    11. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    12. Arora, Gaurav & Agarwal, Sandip K., 2020. "Agricultural input use and index insurance adoption: Concept and evidence," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304508, Agricultural and Applied Economics Association.
    13. van Zyl, J. & Groenewald, J. A., 1986. "A Comparison Of Certain Decision-Making Techniques Under Risk - An Empirical Investigation Of Maize Cultivar Selection," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 25(1), February.
    14. Lien, Gudbrand & Kumbhakar, Subal C. & Mishra, Ashok K. & Hardaker, J. Brian, 2022. "Does risk management affect productivity of organic rice farmers in India? Evidence from a semiparametric production model," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1392-1402.
    15. Clop-Gallart, M. Merce & Juarez-Rubio, Francisco, 2008. "Shape Persistence in Elicited Subjective Crop Yield Probability Density Functions," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44128, European Association of Agricultural Economists.
    16. Du, Xiaodong & Dong, Fengxia, 2024. "Climate Change and Dynamics of Crop Yield Distribution," 2024 Annual Meeting, July 28-30, New Orleans, LA 343786, Agricultural and Applied Economics Association.
    17. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    18. McCarl, Bruce A., 1988. "Preference Among Risky Prospects Under Constant Risk Aversion," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 20(2), pages 25-34, December.
    19. Hennessy, David A., 2009. "Crop Yield Skewness and the Normal Distribution," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(1), pages 1-19, April.
    20. Zheng, Qiujie & Wang, H. Holly & Shi, Qinghua, 2008. "Estimating Farm Level Multivariate Yield Distribution Using Nonparametric Methods," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6509, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    More about this item

    Keywords

    Crop Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uguewp:244742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dagueca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.