[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/aah/create/2018-33.html
   My bibliography  Save this paper

A multilevel factor approach for the analysis of CDS commonality and risk contribution

Author

Listed:
  • Carlos Vladimir Rodríguez-Caballero

    (Mexico Autonomous Institute of Technology (ITAM) and CREATES)

  • Massimiliano Caporin

    (University of Padova)

Abstract
We introduce a novel multilevel factor model that allows for the presence of global and pervasive factors, local factors and semi-pervasive factors, and that captures common features across subsets of the variables of interest. We develop a model estimation procedure and provide a simulation experiment addressing the consistency of our proposal. We complete the analyses by showing how our multilevel model might explain on the commonality across CDS premiums at the global level. In this respect, we cluster countries by either the Debt/GDP ratio or by sovereign ratings. We show that multilevel models are easier to interpret compared with factor models based on principal component analysis. Finally, we experiment how the multilevel model might allow the recovery of the risk contribution due to the latent factors within a basket of country CDS.

Suggested Citation

  • Carlos Vladimir Rodríguez-Caballero & Massimiliano Caporin, 2018. "A multilevel factor approach for the analysis of CDS commonality and risk contribution," CREATES Research Papers 2018-33, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2018-33
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/18/rp18_33.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Caporin, Massimiliano & Pelizzon, Loriana & Ravazzolo, Francesco & Rigobon, Roberto, 2018. "Measuring sovereign contagion in Europe," Journal of Financial Stability, Elsevier, vol. 34(C), pages 150-181.
    2. Francis A. Longstaff & Jun Pan & Lasse H. Pedersen & Kenneth J. Singleton, 2011. "How Sovereign Is Sovereign Credit Risk?," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 75-103, April.
    3. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    4. Antje Berndt & Rohan Douglas & Darrell Duffie & Mark Ferguson, 2018. "Corporate Credit Risk Premia [Fallen angels and price pressure]," Review of Finance, European Finance Association, vol. 22(2), pages 419-454.
    5. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    6. Ang, Andrew & Longstaff, Francis A., 2013. "Systemic sovereign credit risk: Lessons from the U.S. and Europe," Journal of Monetary Economics, Elsevier, vol. 60(5), pages 493-510.
    7. Augustin, Patrick, 2018. "The term structure of CDS spreads and sovereign credit risk," Journal of Monetary Economics, Elsevier, vol. 96(C), pages 53-76.
    8. Dong Hwan Oh & Andrew J. Patton, 2018. "Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model of CDS Spreads," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 181-195, April.
    9. Fabozzi, Frank J. & Giacometti, Rosella & Tsuchida, Naoshi, 2016. "Factor decomposition of the Eurozone sovereign CDS spreads," Journal of International Money and Finance, Elsevier, vol. 65(C), pages 1-23.
    10. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
    11. T. Roncalli & G. Weisang, 2016. "Risk parity portfolios with risk factors," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 377-388, March.
    12. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    13. In Choi & Dukpa Kim & Yun Jung Kim & Noh‐Sun Kwark, 2018. "A multilevel factor model: Identification, asymptotic theory and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 355-377, April.
    14. Hkiri, Besma & Hammoudeh, Shawkat & Aloui, Chaker & Shahbaz, Muhammad, 2018. "The interconnections between U.S. financial CDS spreads and control variables: New evidence using partial and multivariate wavelet coherences," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 237-257.
    15. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    16. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    17. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    18. Nader Naifar & Shawkat Hammoudeh & Aviral Kumar Tiwari, 2019. "Do Energy and Banking CDS Sector Spreads Reflect Financial Risks and Economic Policy Uncertainty? A Time-Scale Decomposition Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 507-534, August.
    19. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    20. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    21. Koutmos, Dimitrios, 2019. "Asset pricing factors and bank CDS spreads," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 58(C), pages 19-41.
    22. Fender, Ingo & Hayo, Bernd & Neuenkirch, Matthias, 2012. "Daily pricing of emerging market sovereign CDS before and during the global financial crisis," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2786-2794.
    23. Pereira, John & Sorwar, Ghulam & Nurullah, Mohamed, 2018. "What drives corporate CDS spreads? A comparison across US, UK and EU firms," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 188-200.
    24. Kocsis, Zalan & Monostori, Zoltan, 2016. "The role of country-specific fundamentals in sovereign CDS spreads: Eastern European experiences," Emerging Markets Review, Elsevier, vol. 27(C), pages 140-168.
    25. Besma Hkiri & Shawkat Hammoudeh & Chaker Aloui, 2016. "Strength of co-movement between sector CDS indexes and relationship with major economic and financial variables over time and during investment horizons," Applied Economics, Taylor & Francis Journals, vol. 48(48), pages 4635-4654, October.
    26. Iván M. Rodríguez & Krishnan Dandapani & Edward R. Lawrence, 2019. "Measuring Sovereign Risk: Are CDS Spreads Better than Sovereign Credit Ratings?," Financial Management, Financial Management Association International, vol. 48(1), pages 229-256, March.
    27. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    28. Mariya Gubareva, 2019. "Weight of the Default Component of CDS Spreads: Avoiding Procyclicality in Credit Loss Provisioning Framework," Complexity, Hindawi, vol. 2019, pages 1-19, July.
    29. Augustin, Patrick & Tédongap, Roméo, 2016. "Real Economic Shocks and Sovereign Credit Risk," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(2), pages 541-587, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "Temperature in the Iberian Peninsula: Trend, seasonality, and heterogeneity," Papers 2406.14145, arXiv.org.
    2. Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024. "Expecting the unexpected: Stressed scenarios for economic growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.
    3. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    4. Gonzalez Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir, 2021. "Expecting the unexpected: economic growth under stress," DES - Working Papers. Statistics and Econometrics. WS 32148, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Rodríguez-Caballero, Carlos Vladimir, 2022. "Energy consumption and GDP: a panel data analysis with multi-level cross-sectional dependence," Econometrics and Statistics, Elsevier, vol. 23(C), pages 128-146.
    6. Ignacio Garr'on & C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "International vulnerability of inflation," Papers 2410.20628, arXiv.org, revised Oct 2024.
    7. Garrón Vedia, Ignacio & Rodríguez Caballero, Carlos Vladimir & Ruiz Ortega, Esther, 2024. "International vulnerability of inflation," DES - Working Papers. Statistics and Econometrics. WS 44814, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    2. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    3. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    4. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    5. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    6. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    7. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
    8. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    9. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    10. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    11. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    12. Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2011. "One-Sided Representations of Generalized Dynamic Factor Models," Working Papers ECARES ECARES 2011-019, ULB -- Universite Libre de Bruxelles.
    13. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    14. Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
    15. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    16. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    17. Heaton, Chris & Solo, Victor, 2012. "Estimation of high-dimensional linear factor models with grouped variables," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 348-367.
    18. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    19. António Rua & Francisco Craveiro Dias, 2008. "Determining the number of factors in approximate factor models with global and group-specific factors," Working Papers w200809, Banco de Portugal, Economics and Research Department.
    20. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    21. Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.

    More about this item

    Keywords

    multilevel factor models; risk contribution; CDS risk factors;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • F30 - International Economics - - International Finance - - - General
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2018-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.