[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/uts/ppaper/2009-5.html
   My bibliography  Save this paper

Developing actionable trading agents

Author

Listed:
Abstract
Trading agents are useful for developing and back-testing quality trading strategies to support smart trading actions in the market. However, most of the existing trading agent research oversimplifies trading strategies, and focuses on simulated ones. As a result, there exists a big gap between the deliverables and business needs when the developed strategies are deployed into the real life. Therefore, the actionable capability of developed trading agents is often very limited. This paper for the first time introduces effective approaches for optimizing and integrating multiple classes of strategies through trading agent collaboration. An integration and optimization approach is proposed to identify optimal trading strategy in each category, and further integrate optimal strategies crossing classes. Positions associated with these optimal strategies are recommended for trading agents to take actions in the market. Extensive experiments on a large quantity of real-life market data show that trading agents following the recommended strategies have great potential to obtain high benefits while low costs. This verifies that it is promising to develop trading agents toward workable and satisfying business needs.

Suggested Citation

  • Longbing Cao & Xue-Zhong He, 2009. "Developing actionable trading agents," Published Paper Series 2009-5, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  • Handle: RePEc:uts:ppaper:2009-5
    as

    Download full text from publisher

    File URL: https://link.springer.com/content/pdf/10.1007%2Fs10115-008-0170-2.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Min & Liu, Ruipeng & Li, Youwei, 2018. "Long memory in financial markets: A heterogeneous agent model perspective," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 38-51.
    2. Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:ppaper:2009-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/sfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.