[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/tsu/tewpjp/2010-008.html
   My bibliography  Save this paper

Term Structure Models Can Predict Interest Rate Volatility. But How?

Author

Listed:
  • Hideyuki Takamizawa
Abstract
This paper attempts to predict the volatility of interest rates through dynamic term structure models. For this attempt, the models are improved, based on the three-factor Gaussian model, to have level-dependent volatilities supported by data. The empirical results show that the predictive power of the proposed models is higher than that of the affine models. Compared with time-series models, it is low for the four-week forecasting horizon but can be comparable for middle to long term rates by extending the horizon up to 32 weeks. The combination of these two different types of forecasts can lead to higher predictive power.

Suggested Citation

  • Hideyuki Takamizawa, 2010. "Term Structure Models Can Predict Interest Rate Volatility. But How?," Tsukuba Economics Working Papers 2010-008, Faculty of Humanities and Social Sciences, University of Tsukuba.
  • Handle: RePEc:tsu:tewpjp:2010-008
    as

    Download full text from publisher

    File URL: https://pepp.hass.tsukuba.ac.jp/RePEc/2010-008.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    2. Collin-Dufresne, Pierre & Goldstein, Robert S. & Jones, Christopher S., 2009. "Can interest rate volatility be extracted from the cross section of bond yields?," Journal of Financial Economics, Elsevier, vol. 94(1), pages 47-66, October.
    3. Pierre Collin‐Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, August.
    4. Pierre Collin‐Dufresne & Robert S. Goldstein & Christopher S. Jones, 2008. "Identification of Maximal Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 63(2), pages 743-795, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hideyuki Takamizawa, 2015. "Predicting Interest Rate Volatility Using Information on the Yield Curve," International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 347-386, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakshi, Gurdip & Crosby, John & Gao, Xiaohui & Hansen, Jorge W., 2023. "Treasury option returns and models with unspanned risks," Journal of Financial Economics, Elsevier, vol. 150(3).
    2. Creal, Drew D. & Wu, Jing Cynthia, 2015. "Estimation of affine term structure models with spanned or unspanned stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 60-81.
    3. Peter Feldhütter & Christian Heyerdahl-Larsen & Philipp Illeditsch, 2018. "Risk Premia and Volatilities in a Nonlinear Term Structure Model [Quadratic term structure models: theory and evidence]," Review of Finance, European Finance Association, vol. 22(1), pages 337-380.
    4. Scott Joslin, 2018. "Can Unspanned Stochastic Volatility Models Explain the Cross Section of Bond Volatilities?," Management Science, INFORMS, vol. 64(4), pages 1707-1726, April.
    5. Filipović, Damir & Gourier, Elise & Mancini, Loriano, 2016. "Quadratic variance swap models," Journal of Financial Economics, Elsevier, vol. 119(1), pages 44-68.
    6. Rangan Gupta & Hylton Hollander & Rudi Steinbach, 2020. "Forecasting output growth using a DSGE-based decomposition of the South African yield curve," Empirical Economics, Springer, vol. 58(1), pages 351-378, January.
    7. Joslin, Scott & Konchitchki, Yaniv, 2018. "Interest rate volatility, the yield curve, and the macroeconomy," Journal of Financial Economics, Elsevier, vol. 128(2), pages 344-362.
    8. Januj Amar Juneja, 2022. "A Computational Analysis of the Tradeoff in the Estimation of Different State Space Specifications of Continuous Time Affine Term Structure Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 173-220, June.
    9. Anna Cieslak & Pavol Povala, 2016. "Information in the Term Structure of Yield Curve Volatility," Journal of Finance, American Finance Association, vol. 71(3), pages 1393-1436, June.
    10. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2012. "Properties of foreign exchange risk premiums," Journal of Financial Economics, Elsevier, vol. 105(2), pages 279-310.
    11. Peter Christoffersen & Christian Dorion & Kris Jacobs & Lotfi Karoui, 2014. "Nonlinear Kalman Filtering in Affine Term Structure Models," Management Science, INFORMS, vol. 60(9), pages 2248-2268, September.
    12. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    13. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Papers 2006.15312, arXiv.org, revised May 2022.
    14. Ruslan Bikbov & Mikhail Chernov, 2009. "Unspanned Stochastic Volatility in Affine Models: Evidence from Eurodollar Futures and Options," Management Science, INFORMS, vol. 55(8), pages 1292-1305, August.
    15. Hideyuki Takamizawa, 2015. "Predicting Interest Rate Volatility Using Information on the Yield Curve," International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 347-386, September.
    16. Della Corte, Pasquale & Sarno, Lucio & Thornton, Daniel L., 2008. "The expectation hypothesis of the term structure of very short-term rates: Statistical tests and economic value," Journal of Financial Economics, Elsevier, vol. 89(1), pages 158-174, July.
    17. Bruno Feunou & Jean-Sébastien Fontaine & Anh Le & Christian Lundblad, 2022. "Tractable Term Structure Models," Management Science, INFORMS, vol. 68(11), pages 8411-8429, November.
    18. Christensen, Bent Jesper & Kjær, Mads Markvart & Veliyev, Bezirgen, 2023. "The incremental information in the yield curve about future interest rate risk," Journal of Banking & Finance, Elsevier, vol. 155(C).
    19. Almeida, Caio & Graveline, Jeremy J. & Joslin, Scott, 2011. "Do interest rate options contain information about excess returns?," Journal of Econometrics, Elsevier, vol. 164(1), pages 35-44, September.
    20. Haitao Li & Feng Zhao, 2009. "Nonparametric Estimation of State-Price Densities Implicit in Interest Rate Cap Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4335-4376, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsu:tewpjp:2010-008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Yoshinori Kurokawa (email available below). General contact details of provider: https://edirc.repec.org/data/iptsujp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.