[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20110052.html
   My bibliography  Save this paper

An Efficient and Fair Solution for Communication Graph Games

Author

Listed:
  • Rene van den Brink

    (VU University Amsterdam, the Netherlands)

  • Anna Khmelnitskaya

    (Russian Academy of Sciences, St Petersburg, Russia)

  • Gerard van der Laan

    (VU University Amsterdam, the Netherlands)

Abstract
This discussion paper resulted in a publication in 'Economics Letters' , 2012, 117, 786-789. We introduce an efficient solution for games with communication graph structures and show that it is characterized by efficiency, fairness and a new axiom called component balancedness. This latter axiom compares for every component in the communication graph the total payoff to the players of this component in the game itself to the total payoff of these players when applying the solution to the subgame induced by this component.

Suggested Citation

  • Rene van den Brink & Anna Khmelnitskaya & Gerard van der Laan, 2011. "An Efficient and Fair Solution for Communication Graph Games," Tinbergen Institute Discussion Papers 11-052/1, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20110052
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/11052.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marco Slikker, 2005. "A characterization of the position value," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(4), pages 505-514, November.
    2. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "Fairness and fairness for neighbors: The difference between the Myerson value and component-wise egalitarian solutions," Economics Letters, Elsevier, vol. 117(1), pages 263-267.
    3. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
    4. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    5. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    6. Yoshio Kamijo, 2009. "A Two-Step Shapley Value For Cooperative Games With Coalition Structures," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 207-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guang Zhang & Erfang Shan & Liying Kang & Yanxia Dong, 2017. "Two efficient values of cooperative games with graph structure based on $$\tau $$ τ -values," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 462-482, August.
    2. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2021. "Cohesive efficiency in TU-games: axiomatizations of variants of the Shapley value, egalitarian values and their convex combinations," Annals of Operations Research, Springer, vol. 302(1), pages 23-47, July.
    3. Rong Zou & Genjiu Xu & Dongshuang Hou, 2023. "Efficient extensions of the Myerson value based on endogenous claims from players," Annals of Operations Research, Springer, vol. 323(1), pages 287-300, April.
    4. Sylvain Béal & André Casajus & Frank Huettner, 2018. "Efficient extensions of communication values," Annals of Operations Research, Springer, vol. 264(1), pages 41-56, May.
    5. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "Fairness and fairness for neighbors: The difference between the Myerson value and component-wise egalitarian solutions," Economics Letters, Elsevier, vol. 117(1), pages 263-267.
    6. René Brink & Anna Khmelnitskaya & Gerard Laan, 2016. "An Owen-type value for games with two-level communication structure," Annals of Operations Research, Springer, vol. 243(1), pages 179-198, August.
    7. Erfang Shan & Zhiqiang Yu & Wenrong Lyu, 2023. "Union-wise egalitarian solutions in cooperative games with a coalition structure," 4OR, Springer, vol. 21(3), pages 533-545, September.
    8. Xun-Feng Hu, 2020. "The weighted Shapley-egalitarian value for cooperative games with a coalition structure," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 193-212, April.
    9. Xun-Feng Hu & Gen-Jiu Xu & Deng-Feng Li, 2019. "The Egalitarian Efficient Extension of the Aumann–Drèze Value," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 1033-1052, June.
    10. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2019. "Cohesive efficiency in TU-games: Two extensions of the Shapley value," Working Papers 2019-03, CRESE.
    11. Sylvain Béal & André Casajus & Frank Huettner, 2015. "Efficient extensions of the Myerson value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 819-827, December.
    12. Hu, Xun-Feng, 2019. "Coalitional surplus desirability and the equal surplus division value," Economics Letters, Elsevier, vol. 179(C), pages 1-4.
    13. Aguiar, Victor H. & Pongou, Roland & Tondji, Jean-Baptiste, 2018. "A non-parametric approach to testing the axioms of the Shapley value with limited data," Games and Economic Behavior, Elsevier, vol. 111(C), pages 41-63.
    14. Shan, Erfang & Zhang, Guang & Dong, Yanxia, 2016. "Component-wise proportional solutions for communication graph games," Mathematical Social Sciences, Elsevier, vol. 81(C), pages 22-28.
    15. Daniel Li Li & Erfang Shan, 2020. "Efficient quotient extensions of the Myerson value," Annals of Operations Research, Springer, vol. 292(1), pages 171-181, September.
    16. Béal, Sylvain & Casajus, André & Huettner, Frank, 2016. "On the existence of efficient and fair extensions of communication values for connected graphs," Economics Letters, Elsevier, vol. 146(C), pages 103-106.
    17. Erfang Shan & Jilei Shi & Wenrong Lyu, 2023. "The efficient partition surplus Owen graph value," Annals of Operations Research, Springer, vol. 320(1), pages 379-392, January.
    18. Shi, Jilei & Shan, Erfang, 2020. "Weighted component-wise solutions for graph games," Economics Letters, Elsevier, vol. 192(C).
    19. Hu, Xun-Feng & Li, Deng-Feng & Xu, Gen-Jiu, 2018. "Fair distribution of surplus and efficient extensions of the Myerson value," Economics Letters, Elsevier, vol. 165(C), pages 1-5.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, Erfang & Zhang, Guang & Dong, Yanxia, 2016. "Component-wise proportional solutions for communication graph games," Mathematical Social Sciences, Elsevier, vol. 81(C), pages 22-28.
    2. Sylvain Béal & Anna Khmelnitskaya & Philippe Solal, 2018. "Two-step values for games with two-level communication structure," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 563-587, February.
    3. Sylvain Béal & André Casajus & Frank Huettner, 2018. "Efficient extensions of communication values," Annals of Operations Research, Springer, vol. 264(1), pages 41-56, May.
    4. Guang Zhang & Erfang Shan & Liying Kang & Yanxia Dong, 2017. "Two efficient values of cooperative games with graph structure based on $$\tau $$ τ -values," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 462-482, August.
    5. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Discussion Paper 2011-100, Tilburg University, Center for Economic Research.
    6. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
    7. Surajit Borkotokey & Sujata Goala & Niharika Kakoty & Parishmita Boruah, 2022. "The component-wise egalitarian Myerson value for Network Games," Papers 2201.02793, arXiv.org.
    8. Huseynov, T. & Talman, A.J.J., 2012. "The Communication Tree Value for TU-games with Graph Communication," Other publications TiSEM 6ba97d87-1ac6-4af7-a981-a, Tilburg University, School of Economics and Management.
    9. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2024. "Weighted Myerson value for Network games," Papers 2402.11464, arXiv.org.
    10. Daniel Li Li & Erfang Shan, 2022. "Safety of links with respect to the Myerson value for communication situations," Operational Research, Springer, vol. 22(3), pages 2121-2131, July.
    11. Napel, Stefan & Nohn, Andreas & Alonso-Meijide, José Maria, 2012. "Monotonicity of power in weighted voting games with restricted communication," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 247-257.
    12. Talman, A.J.J. & Yamamoto, Y., 2008. "Average tree solution and subcore for acyclic graph games," Other publications TiSEM 47c15bd0-3911-429c-8952-7, Tilburg University, School of Economics and Management.
    13. van den Nouweland, Anne & Slikker, Marco, 2012. "An axiomatic characterization of the position value for network situations," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 266-271.
    14. Surajit Borkotokey & Loyimee Gogoi & Sudipta Sarangi, 2014. "A Survey of Player-based and Link-based Allocation Rules for Network Games," Studies in Microeconomics, , vol. 2(1), pages 5-26, June.
    15. Takumi Kongo, 2010. "Difference between the position value and the Myerson value is due to the existence of coalition structures," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(4), pages 669-675, October.
    16. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    17. Sridhar Mandyam & Usha Sridhar, 2017. "DON and Shapley Value for Allocation among Cooperating Agents in a Network: Conditions for Equivalence," Studies in Microeconomics, , vol. 5(2), pages 143-161, December.
    18. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2021. "The average tree value for hypergraph games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 437-460, December.
    19. Ghintran, Amandine, 2013. "Weighted position values," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 157-163.
    20. Kamijo, Yoshio, 2009. "A linear proportional effort allocation rule," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 341-353, November.

    More about this item

    Keywords

    TU game; communication graph; Myerson value; fairness; efficiency;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20110052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.