[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2010cf770.html
   My bibliography  Save this paper

Discrete/Continuous Choice Model of the Residential Gas Demand on the Nonconvex Budget Set

Author

Listed:
  • Koji Miyawaki

    (National Institute for Environmental Studies)

  • Yasuhiro Omori

    (Faculty of Economics, University of Tokyo)

  • Akira Hibiki

    (National Institute for Environmental Studies)

Abstract
The discrete/continuous choice approach is often used to analyze the demand for public utility services under block rate pricing, which is a nonlinear price system. Although a consumer's budget set is convex under increasing block rate pricing, a consumer's budget set is nonconvex under decreasing block rate pricing as is the case with the gas supply in Japan and the United Kingdom. The nonlinearity problem, which has not been examined in previous studies, arises under nonconvex budget sets in which the indirect utility function corresponding to the demand function becomes highly nonlinear. To address this problem, this article proposes a feasible, efficient method of demand on the nonconvex budget set and implements a case study using household-level data on Japanese residential gas consumption. The advantages of our method are as follows: (i) the construction of an efficient Markov chain Monte Carlo algorithm with an efficient blanket based on the Hermite-Hadamard integral inequality and the power-mean inequality, (ii) the explicit consideration of the (highly nonlinear) separability condition, which often makes numerical likelihood maximization difficult, and (iii) the introduction of normal disturbance into the discrete/continuous choice model.

Suggested Citation

  • Koji Miyawaki & Yasuhiro Omori & Akira Hibiki, 2010. "Discrete/Continuous Choice Model of the Residential Gas Demand on the Nonconvex Budget Set," CIRJE F-Series CIRJE-F-770, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2010cf770
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2010/2010cf770.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    2. Hanemann, W Michael, 1984. "Discrete-Continuous Models of Consumer Demand," Econometrica, Econometric Society, vol. 52(3), pages 541-561, May.
    3. Koji Miyawaki & Yasuhiro Omori & Akira Hibiki, 2006. "Bayesian Estimation of Demand Functions under Block Rate Pricing," CIRJE F-Series CIRJE-F-424, CIRJE, Faculty of Economics, University of Tokyo.
    4. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    5. Burtless, Gary & Moffitt, Robert A, 1985. "The Joint Choice of Retirement Age and Postretirement Hours of Work," Journal of Labor Economics, University of Chicago Press, vol. 3(2), pages 209-236, April.
    6. Jean-Thomas Bernard & Denis Bolduc & Donald Belanger, 1996. "Quebec Residential Electricity Demand: A Microeconometric Approach," Canadian Journal of Economics, Canadian Economics Association, vol. 29(1), pages 92-113, February.
    7. Carlos E. Carpio & Michael K. Wohlgenant & Charles D. Safley, 2008. "A Structural Econometric Model of Joint Consumption of Goods and Recreational Time: An Application to Pick-Your-Own Fruit," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(3), pages 644-657.
    8. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    9. Baker, Paul & Blundell, Richard & Micklewright, John, 1989. "Modelling Household Energy Expenditures Using Micro-data," Economic Journal, Royal Economic Society, vol. 99(397), pages 720-738, September.
    10. Lee, Ray-Shine & Singh, Nirvikar, 1994. "Patterns in Residential Gas and Electricity Consumption: An Econometric Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 233-241, April.
    11. Vaage, Kjell, 2000. "Heating technology and energy use: a discrete/continuous choice approach to Norwegian household energy demand," Energy Economics, Elsevier, vol. 22(6), pages 649-666, December.
    12. Lee, Lung-Fei & Trost, Robert P., 1978. "Estimation of some limited dependent variable models with application to housing demand," Journal of Econometrics, Elsevier, vol. 8(3), pages 357-382, December.
    13. Maddala, G S, et al, 1997. "Estimation of Short-Run and Long-Run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 90-100, January.
    14. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    15. Hausman, Jerry A, 1985. "The Econometrics of Nonlinear Budget Sets," Econometrica, Econometric Society, vol. 53(6), pages 1255-1282, November.
    16. Burtless, Gary & Hausman, Jerry A, 1978. "The Effect of Taxation on Labor Supply: Evaluating the Gary Negative Income Tax Experiments," Journal of Political Economy, University of Chicago Press, vol. 86(6), pages 1103-1130, December.
    17. Soren Blomquist & Whitney Newey, 2002. "Nonparametric Estimation with Nonlinear Budget Sets," Econometrica, Econometric Society, vol. 70(6), pages 2455-2480, November.
    18. Julie A. Hewitt & W. Michael Hanemann, 1995. "A Discrete/Continuous Choice Approach to Residential Water Demand under Block Rate Pricing," Land Economics, University of Wisconsin Press, vol. 71(2), pages 173-192.
    19. Beierlein, James G & Dunn, James W & McConnon, James C, Jr, 1981. "The Demand for Electricity and Natural Gas in the Northeastern United States," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 403-408, August.
    20. De Jong, G. C., 1990. "An indirect utility model of car ownership and private car use," European Economic Review, Elsevier, vol. 34(5), pages 971-985, July.
    21. Hausmann, J. A. & Kinnucan, M. & McFaddden, D., 1979. "A two-level electricity demand model : Evaluation of the connecticut time-of-day pricing test," Journal of Econometrics, Elsevier, vol. 10(3), pages 263-289, August.
    22. Bloch, Farrell E., 1980. "Residential demand for natural gas," Journal of Urban Economics, Elsevier, vol. 7(3), pages 371-383, May.
    23. Hausman, Jerry A, 1981. "Exact Consumer's Surplus and Deadweight Loss," American Economic Review, American Economic Association, vol. 71(4), pages 662-676, September.
    24. Kenneth E. Train, 1991. "Optimal Regulation: The Economic Theory of Natural Monopoly," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262200848, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koji Miyawaki & Yasuhiro Omori & Akira Hibiki, 2018. "A discrete/continuous choice model on a nonconvex budget set," Econometric Reviews, Taylor & Francis Journals, vol. 37(2), pages 89-113, February.
    2. Koji Miyawaki & Yasuhiro Omori, 2007. "Duality-Based Analysis of Residential Gas Demand under Decreasing Block Rate Pricing," CIRJE F-Series CIRJE-F-506, CIRJE, Faculty of Economics, University of Tokyo.
    3. Koji Miyawaki & Yasuhiro Omori & Akira Hibiki, 2006. "Bayesian Estimation of Demand Functions under Block Rate Pricing," CIRJE F-Series CIRJE-F-424, CIRJE, Faculty of Economics, University of Tokyo.
    4. van den Bergh, Jeroen C.J.M., 2008. "Environmental regulation of households: An empirical review of economic and psychological factors," Ecological Economics, Elsevier, vol. 66(4), pages 559-574, July.
    5. Koji Miyawaki & Yasuhiro Omori & Akira Hibiki, 2011. "Panel Data Analysis Of Japanese Residential Water Demand Using A Discrete/Continuous Choice Approach," The Japanese Economic Review, Japanese Economic Association, vol. 62(3), pages 365-386, September.
    6. Cristina Lopez-Mayan, 2014. "Microeconometric Analysis of Residential Water Demand," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 137-166, September.
    7. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    8. Wang, Xiangrui & Lee, Jukwan & Yan, Jia & Thompson, Gary D., 2017. "Modeling Rational But Inattentive Consumer’s Residential Water Demand," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258555, Agricultural and Applied Economics Association.
    9. Rehdanz, Katrin, 2007. "Determinants of residential space heating expenditures in Germany," Energy Economics, Elsevier, vol. 29(2), pages 167-182, March.
    10. Kowalski, Amanda E., 2015. "Estimating the tradeoff between risk protection and moral hazard with a nonlinear budget set model of health insurance," International Journal of Industrial Organization, Elsevier, vol. 43(C), pages 122-135.
    11. Hancevic, Pedro Ignacio & Lopez-Aguilar, Javier Alejandro, 2019. "Energy efficiency programs in the context of increasing block tariffs: The case of residential electricity in Mexico," Energy Policy, Elsevier, vol. 131(C), pages 320-331.
    12. Reiss, Peter C. & White, Matthew W., 2002. "Household Electricity Demand, Revisited," Research Papers 1830, Stanford University, Graduate School of Business.
    13. Li, Jia & Just, Richard E., 2018. "Modeling household energy consumption and adoption of energy efficient technology," Energy Economics, Elsevier, vol. 72(C), pages 404-415.
    14. Kumar, Anil, 2008. "Labor supply, deadweight loss and tax reform act of 1986: A nonparametric evaluation using panel data," Journal of Public Economics, Elsevier, vol. 92(1-2), pages 236-253, February.
    15. Wang, Xiangrui & Lee, Jukwan & Yan, Jia & Thompson, Gary D., 2018. "Testing the behavior of rationally inattentive consumers in a residential water market," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 344-359.
    16. Peter C. Reiss & Matthew W. White, 2001. "Household Electricity Demand, Revisited," NBER Working Papers 8687, National Bureau of Economic Research, Inc.
    17. Daniel A. Brent, 2016. "Estimating Water Demand Elasticity at the Intensive and Extensive Margin," Departmental Working Papers 2016-06, Department of Economics, Louisiana State University.
    18. Gan, Li & Ju, Gaosheng & Zhu, Xi, 2015. "Nonparametric estimation of structural labor supply and exact welfare change under nonconvex piecewise-linear budget sets," Journal of Econometrics, Elsevier, vol. 188(2), pages 526-544.
    19. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    20. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2010cf770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.