[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v48y2015i3p983-1011.html
   My bibliography  Save this article

Stochastic trends and seasonality in economic time series: new evidence from Bayesian stochastic model specification search

Author

Listed:
  • Tommaso Proietti
  • Stefano Grassi
Abstract
An important issue in modelling economic time series is whether key unobserved components representing trends, seasonality and calendar components, are deterministic or evolutive. We address it by applying a recently proposed Bayesian variable selection methodology to an encompassing linear mixed model that features, along with deterministic effects, additional random explanatory variables that account for the evolution of the underlying level, slope, seasonality and trading days. Variable selection is performed by estimating the posterior model probabilities using a suitable Gibbs sampling scheme. The paper conducts an extensive empirical application on a large and representative set of monthly time series concerning industrial production and retail turnover. We find strong support for the presence of stochastic trends in the series, either in the form of a time-varying level, or, less frequently, of a stochastic slope, or both. Seasonality is a more stable component, although in at least 60 % of the cases we were able to select one or more stochastic trigonometric cycles. Most frequently the time variation is found in correspondence with the fundamental and the first harmonic cycles. An interesting and intuitively plausible finding is that the probability of estimating time-varying components increases with the sample size available. However, even for very large sample sizes we were unable to find stochastically varying calendar effects. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Tommaso Proietti & Stefano Grassi, 2015. "Stochastic trends and seasonality in economic time series: new evidence from Bayesian stochastic model specification search," Empirical Economics, Springer, vol. 48(3), pages 983-1011, May.
  • Handle: RePEc:spr:empeco:v:48:y:2015:i:3:p:983-1011
    DOI: 10.1007/s00181-014-0821-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-014-0821-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-014-0821-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tommaso, Proietti & Stefano, Grassi, 2010. "Bayesian stochastic model specification search for seasonal and calendar effects," MPRA Paper 27305, University Library of Munich, Germany.
    2. Dagum, Estela Bee & Quenneville, Benoit, 1993. "Dynamic linear models for time series components," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 333-351.
    3. Sims, Christopher A., 1988. "Bayesian skepticism on unit root econometrics," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 463-474.
    4. Arnold Zellner, 1978. "Seasonal Analysis of Economic Time Series," NBER Books, National Bureau of Economic Research, Inc, number zell78-1.
    5. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    6. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    7. DeJong, David N & Whiteman, Charles H, 1991. "The Case for Trend-Stationarity Is Stronger Than We Thought," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 413-421, Oct.-Dec..
    8. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    9. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    10. Koop, Gary & Dijk, Herman K. Van, 2000. "Testing for integration using evolving trend and seasonals models: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 97(2), pages 261-291, August.
    11. Grassi, S. & Proietti, T., 2014. "Characterising economic trends by Bayesian stochastic model specification search," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 359-374.
    12. Sims, Christopher A & Uhlig, Harald, 1991. "Understanding Unit Rooters: A Helicopter Tour," Econometrica, Econometric Society, vol. 59(6), pages 1591-1599, November.
    13. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882.
    14. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    15. Nerlove, Marc & Grether, David M. & Carvalho, José L., 1979. "Analysis of Economic Time Series," Elsevier Monographs, Elsevier, edition 1, number 9780125157506 edited by Shell, Karl.
    16. la Grange, Anthony & le Roux, Niël & Gardner-Lubbe, Sugnet, 2009. "BiplotGUI: Interactive Biplots in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 30(i12).
    17. Schotman, Peter C & van Dijk, Herman K, 1991. "On Bayesian Routes to Unit Roots," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 387-401, Oct.-Dec..
    18. Hylleberg, S. (ed.), 1992. "Modelling Seasonality," OUP Catalogue, Oxford University Press, number 9780198773184.
    19. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    20. Phillips, P C B, 1991. "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 333-364, Oct.-Dec..
    21. Hylleberg, S. & Pagan, A. R., 1997. "Seasonal integration and the evolving seasonals model," International Journal of Forecasting, Elsevier, vol. 13(3), pages 329-340, September.
    22. Busetti, Fabio & Harvey, Andrew, 2003. "Seasonality Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 420-436, July.
    23. Koop, Gary, 1992. "'Objective' Bayesian Unit Root Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(1), pages 65-82, Jan.-Marc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filippo Ferroni & Stefano Grassi & Miguel A. Leon-Ledesma, 2015. "Fundamental shock selection in DSGE models," Studies in Economics 1508, School of Economics, University of Kent.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grassi, S. & Proietti, T., 2014. "Characterising economic trends by Bayesian stochastic model specification search," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 359-374.
    2. Tommaso, Proietti & Stefano, Grassi, 2010. "Bayesian stochastic model specification search for seasonal and calendar effects," MPRA Paper 27305, University Library of Munich, Germany.
    3. Koop, Gary & Dijk, Herman K. Van, 2000. "Testing for integration using evolving trend and seasonals models: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 97(2), pages 261-291, August.
    4. Svend Hylleberg, 2006. "Seasonal Adjustment," Economics Working Papers 2006-04, Department of Economics and Business Economics, Aarhus University.
    5. Loukia Meligkotsidou & Elias Tzavalis & Ioannis D. Vrontos, 2004. "A Bayesian Analysis of Unit Roots and Structural Breaks in the Level and the Error Variance of Autoregressive Models," Working Papers 514, Queen Mary University of London, School of Economics and Finance.
    6. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    7. Marriott, John & Newbold, Paul, 2000. "The strength of evidence for unit autoregressive roots and structural breaks: A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 98(1), pages 1-25, September.
    8. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    9. Magris Martin & Iosifidis Alexandros, 2021. "Approximate Bayes factors for unit root testing," Papers 2102.10048, arXiv.org, revised Feb 2021.
    10. Francis W. Ahking, 2002. "Is the Bayesian Approach Necessarily Better than the Classical Approach in Unit-Root Test?," Working papers 2002-18, University of Connecticut, Department of Economics.
    11. Loukia Meligkotsidou & Elias Tzavalis & Ioannis D. Vrontos, 2004. "A Bayesian Analysis of Unit Roots and Structural Breaks in the Level and the Error Variance of Autoregressive Models," Working Papers 514, Queen Mary University of London, School of Economics and Finance.
    12. Mengheng Li & Ivan Mendieta-Munoz, 2019. "The multivariate simultaneous unobserved components model and identification via heteroskedasticity," Working Paper Series 2019/08, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
    13. Francis W. Ahking, 2004. "The Power of the "Objective" Bayesian Unit-Root Test," Working papers 2004-14, University of Connecticut, Department of Economics.
    14. Fabio Busetti, 2006. "Tests of seasonal integration and cointegration in multivariate unobserved component models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 419-438.
    15. Thabo M. Mokoena & Rangan Gupta & Reneé Van Eyden, 2009. "Testing For Ppp Using Sadc Real Exchange Rates," South African Journal of Economics, Economic Society of South Africa, vol. 77(3), pages 351-362, September.
    16. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    17. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    18. Tommaso Proietti & Eric Hillebrand, 2017. "Seasonal changes in central England temperatures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 769-791, June.
    19. N. Vijayamohanan Pillai, 2001. "Electricity demand analysis and forecasting: The tradition is questioned," Centre for Development Studies, Trivendrum Working Papers 312, Centre for Development Studies, Trivendrum, India.
    20. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.

    More about this item

    Keywords

    Nonstationarity; Variable selection; Linear Mixed Models; Seasonality; E32; E37; C53;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:48:y:2015:i:3:p:983-1011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.