[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/rze/efinan/v7y2011i2p1-16.html
   My bibliography  Save this article

Modeling Stock Market Indexes With Copula Functions

Author

Listed:
  • Jacek Leskow

    (Wyzsza Szkola Biznesu National-Louis University in Nowy Sacz)

  • Justyna Mokrzycka

    (Wyzsza Szkola Biznesu National-Louis University in Nowy Sacz)

  • Krzysztof Krawiec

    (Wyzsza Szkola Biznesu National-Louis University in Nowy Sacz)

Abstract
Contemporary financial risk management is significantly based on the analysis of time series of returns. One of the most significant errors frequently committed by analysts is the predominant use of normal distributions when it is clear that the returns are not normal. Copula models and models for non-normal multivariate distributions provide new tools to solve the problem because the obtained results are immediately applicable in portfolio management, option pricing and measuring risk without assuming normality. Therefore, both a theoretician and a practitioner are interested in multivariate models for returns and copula functions. The copula function models provide an effective and interesting technique of constructing multivariate distribution starting from marginal ones. Due to Sklar's result established in 1959, we can present any multivariate distribution with a help of corresponding marginal distributions and a selected copula function. In this work we present an application of copula function to construct multivariate conditional distributions of times series. In the last part of this paper dynamic models such as DCC-MVGARCH and conditional copula are analyzed. Moreover, we also present an application of bootstrap in the context of copula function. This work is appended by examples showing practical application of our work.

Suggested Citation

  • Jacek Leskow & Justyna Mokrzycka & Krzysztof Krawiec, 2011. "Modeling Stock Market Indexes With Copula Functions," "e-Finanse", University of Information Technology and Management, Institute of Financial Research and Analysis, vol. 7(2), pages 1-16, August.
  • Handle: RePEc:rze:efinan:v:7:y:2011:i:2:p:1-16
    as

    Download full text from publisher

    File URL: http://www.e-finanse.com/artykuly_eng/180.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    2. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Patton, Andrew J, 2001. "Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula," University of California at San Diego, Economics Working Paper Series qt01q7j1s2, Department of Economics, UC San Diego.
    5. Rob van den Goorbergh, 2004. "A Copula-Based Autoregressive Conditional Dependence Model of International Stock Markets," DNB Working Papers 022, Netherlands Central Bank, Research Department.
    6. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    7. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    2. Bodnar, Taras & Hautsch, Nikolaus, 2012. "Copula-based dynamic conditional correlation multiplicative error processes," SFB 649 Discussion Papers 2012-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. repec:hum:wpaper:sfb649dp2012-044 is not listed on IDEAS
    4. Tse, Chin-Bun & Rodgers, Timothy & Niklewski, Jacek, 2014. "The 2007 financial crisis and the UK residential housing market: Did the relationship between interest rates and house prices change?," Economic Modelling, Elsevier, vol. 37(C), pages 518-530.
    5. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    6. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Liang Peng & Rainer Schulz, 2013. "Does the Diversification Potential of Securitized Real Estate Vary Over Time and Should Investors Care?," The Journal of Real Estate Finance and Economics, Springer, vol. 47(2), pages 310-340, August.
    8. Yassine Belasri & Rachid Ellaia, 2017. "Estimation of Volatility and Correlation with Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models: An Application to Moroccan Stock Markets," International Journal of Economics and Financial Issues, Econjournals, vol. 7(2), pages 384-396.
    9. Takashi Isogai, 2015. "An Empirical Study of the Dynamic Correlation of Japanese Stock Returns," Bank of Japan Working Paper Series 15-E-7, Bank of Japan.
    10. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    12. Simon Fritzsch & Maike Timphus & Gregor Weiss, 2021. "Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting?," Papers 2109.10946, arXiv.org.
    13. Anna Pauliina Sandqvist, 2017. "Dynamics of sectoral business cycle comovement," Applied Economics, Taylor & Francis Journals, vol. 49(47), pages 4742-4759, October.
    14. Saker Sabkha & Christian de Peretti, 2018. "On the performances of Dynamic Conditional Correlation models in the Sovereign CDS market and the corresponding bond market," Working Papers hal-01710398, HAL.
    15. Fuentes Vélez, Mariana & Pinilla Barrera, Alejandro, 2021. "Transmisión de volatilidad en el Mercado Integrado Latinoamericano (MILA): una evidencia del grado de integración. || Transmission of volatility in the Latin American Integrated Market (MILA): evidenc," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 31(1), pages 301-328, June.
    16. Saker Sabkha & Christian de Peretti, 2022. "On the performances of Dynamic Conditional Correlation models in the Sovereign CDS market and the corresponding bond market," Post-Print hal-01710398, HAL.
    17. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    18. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    19. Yilmaz, Tolgahan, 2010. "Improving Portfolio Optimization by DCC And DECO GARCH: Evidence from Istanbul Stock Exchange," MPRA Paper 27314, University Library of Munich, Germany.
    20. Dogus Emin, 2016. "Effects of Global Incidents on Dynamic Correlations of Emerging European Countries," Eurasian Journal of Economics and Finance, Eurasian Publications, vol. 4(1), pages 1-23.
    21. Emerson Fernandes Marcal & Pedro Valls Pereira & Diogenes Manoel Leiva Martin & Wilson Toshiro Nakamura, 2011. "Evaluation of contagion or interdependence in the financial crises of Asia and Latin America, considering the macroeconomic fundamentals," Applied Economics, Taylor & Francis Journals, vol. 43(19), pages 2365-2379.

    More about this item

    Keywords

    copula function; GARCH model; conditional copula; DCC-MVGARCH; dynamic conditional copula; bootstrap;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rze:efinan:v:7:y:2011:i:2:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Pawel Bochenek (email available below). General contact details of provider: https://edirc.repec.org/data/igwsipl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.