(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v50y2011i4p585-603.html
   My bibliography  Save this article

The Ancillary Benefits from Climate Policy in the United States

Author

Listed:
  • Britt Groosman
  • Nicholas Muller
  • Erin O’Neill-Toy
Abstract
This study investigates the benefits to human health that would occur in the United States (U.S.) due to reductions in local air pollutant emissions stemming from a federal policy to reduce greenhouse gas emissions (GHG). In order to measure the impacts of reduced emissions of local pollutants, this study considers a representative U.S. climate policy. Specifically, the climate policy modeled in this analysis is the Warner-Lieberman bill (S.2191) of 2008 and the paper considers the impacts of reduced emissions in the transport and electric power sectors. This analysis provides strong evidence that climate change policy in the U.S. will generate significant returns to society in excess of the benefits due to climate stabilization. The total health-related co-benefits associated with a representative climate policy over the years 2006 to 2030 range between $90 and $725 billion in present value terms depending on modeling assumptions. The majority of avoided damages are due to reduced emissions of SO2 from coal-fired power plants. Among the most important assumptions is whether remaining coal-fired generation capacity is permitted to “backslide” up to the Clean Air Interstate Rule (CAIR) cap on emissions. This analysis models two scenarios specifically related to this issue. Co-benefits increase from $90 billion, when the CAIR cap is met, to $256 billion if SO2 emissions are not permitted to exceed current emission rates. On a per ton basis, the co-benefit per ton of GHG emissions is projected to average between $2 and $14 ($2006). The per ton marginal abatement cost for the representative climate policy is estimated at $9 ($2006).
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Britt Groosman & Nicholas Muller & Erin O’Neill-Toy, 2011. "The Ancillary Benefits from Climate Policy in the United States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 50(4), pages 585-603, December.
  • Handle: RePEc:kap:enreec:v:50:y:2011:i:4:p:585-603
    DOI: 10.1007/s10640-011-9483-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10640-011-9483-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10640-011-9483-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Espey, Molly, 1998. "Gasoline demand revisited: an international meta-analysis of elasticities," Energy Economics, Elsevier, vol. 20(3), pages 273-295, June.
    2. Nicholas Z. Muller & Robert Mendelsohn & William Nordhaus, 2011. "Environmental Accounting for Pollution in the United States Economy," American Economic Review, American Economic Association, vol. 101(5), pages 1649-1675, August.
    3. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    4. Dallas Burtraw & Alan Krupnick & Erin Mansur & David Austin & Deirdre Farrell, 1998. "Costs And Benefits Of Reducing Air Pollutants Related To Acid Rain," Contemporary Economic Policy, Western Economic Association International, vol. 16(4), pages 379-400, October.
    5. Daniel J. Graham & Stephen Glaister, 2002. "The Demand for Automobile Fuel: A Survey of Elasticities," Journal of Transport Economics and Policy, University of Bath, vol. 36(1), pages 1-25, January.
    6. Alfredo A. Romero, 2007. "Revisiting the Price Elasticity of Gasoline Demand," Working Papers 63, Department of Economics, College of William and Mary.
    7. Muller, Nicholas Z. & Mendelsohn, Robert, 2007. "Measuring the damages of air pollution in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 1-14, July.
    8. Puller, Steven L. & Greening, Lorna A., 1999. "Household adjustment to gasoline price change: an analysis using 9 years of US survey data," Energy Economics, Elsevier, vol. 21(1), pages 37-52, February.
    9. Viscusi, W Kip & Aldy, Joseph E, 2003. "The Value of a Statistical Life: A Critical Review of Market Estimates throughout the World," Journal of Risk and Uncertainty, Springer, vol. 27(1), pages 5-76, August.
    10. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    11. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
    12. W. Kip Viscusi, 2004. "The Value of Life: Estimates with Risks by Occupation and Industry," Economic Inquiry, Western Economic Association International, vol. 42(1), pages 29-48, January.
    13. Mendelsohn, Robert, 1980. "An economic analysis of air pollution from coal-fired power plants," Journal of Environmental Economics and Management, Elsevier, vol. 7(1), pages 30-43, March.
    14. repec:reg:rpubli:282 is not listed on IDEAS
    15. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    16. Nicholas Z. Muller & Robert Mendelsohn, 2009. "Efficient Pollution Regulation: Getting the Prices Right," American Economic Review, American Economic Association, vol. 99(5), pages 1714-1739, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaw, Charles, 2020. "Econometric Analysis of Demand for Petrol in India, 1966-2019," MPRA Paper 104797, University Library of Munich, Germany.
    2. Liddle, Brantley & Parker, Steven, 2022. "One more for the road: Reconsidering whether OECD gasoline income and price elasticities have changed over time," Energy Economics, Elsevier, vol. 114(C).
    3. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    4. Burke, Paul J. & Nishitateno, Shuhei, 2013. "Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries," Energy Economics, Elsevier, vol. 36(C), pages 363-370.
    5. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    6. Hössinger, Reinhard & Link, Christoph & Sonntag, Axel & Stark, Juliane, 2017. "Estimating the price elasticity of fuel demand with stated preferences derived from a situational approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 154-171.
    7. Yuliya Lovcha & Alejandro Perez-Laborda, 2017. "Structural shocks and dynamic elasticities in a long memory model of the US gasoline retail market," Empirical Economics, Springer, vol. 53(2), pages 405-422, September.
    8. Nicholas Z. Muller, 2014. "Toward the Measurement of Net Economic Welfare: Air Pollution Damage in the US National Accounts–2002, 2005, 2008," NBER Chapters, in: Measuring Economic Sustainability and Progress, pages 429-459, National Bureau of Economic Research, Inc.
    9. Melo, Patricia C. & Ramli, Ahmad Razi, 2014. "Estimating fuel demand elasticities to evaluate CO2 emissions: Panel data evidence for the Lisbon Metropolitan Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 30-46.
    10. Muller Nicholas & Tong Daniel & Mendelsohn Robert, 2009. "Regulating NOx and SO2 Emissions in Atlanta," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 9(2), pages 1-32, March.
    11. Tilov, Ivan & Weber, Sylvain, 2023. "Heterogeneity in price elasticity of vehicle kilometers traveled: Evidence from micro-level panel data," Energy Economics, Elsevier, vol. 127(PA).
    12. Ian W. H. Parry & Kenneth A. Small, 2005. "Does Britain or the United States Have the Right Gasoline Tax?," American Economic Review, American Economic Association, vol. 95(4), pages 1276-1289, September.
    13. Gillingham, Kenneth & Munk-Nielsen, Anders, 2019. "A tale of two tails: Commuting and the fuel price response in driving," Journal of Urban Economics, Elsevier, vol. 109(C), pages 27-40.
    14. Laurence Levin & Matthew S. Lewis & Frank A. Wolak, 2017. "High Frequency Evidence on the Demand for Gasoline," American Economic Journal: Economic Policy, American Economic Association, vol. 9(3), pages 314-347, August.
    15. Mohammad Vesal & Amir Hossein Tavakoli & Mohammad H. Rahmati, 2022. "What do one hundred million transactions tell us about demand elasticity of gasoline?," Empirical Economics, Springer, vol. 62(6), pages 2693-2711, June.
    16. Pablo del Río & Desiderio Romero & Marta Jorge & Mercedes Burguillo, 2012. "Territorial differences for transport fuel demand in Spain: an econometric study," Chapters, in: Larry Kreiser & Ana Yábar Sterling & Pedro Herrera & Janet E. Milne & Hope Ashiabor (ed.), Green Taxation and Environmental Sustainability, chapter 4, pages 56-68, Edward Elgar Publishing.
    17. Anderson, Soren T., 2012. "The demand for ethanol as a gasoline substitute," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 151-168.
    18. Parry, Ian W.H. & Timilsina, Govinda R., 2009. "Pricing externalities from passenger transportation in Mexico city," Policy Research Working Paper Series 5071, The World Bank.
    19. Lin, C.-Y. Cynthia & Prince, Lea, 2013. "Gasoline price volatility and the elasticity of demand for gasoline," Energy Economics, Elsevier, vol. 38(C), pages 111-117.
    20. Muller, Nicholas Z. & Mendelsohn, Robert, 2007. "Measuring the damages of air pollution in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:50:y:2011:i:4:p:585-603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.