[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v69y2021i2p632-654.html
   My bibliography  Save this article

Bayesian Decision Making in Groups is Hard

Author

Listed:
  • Jan Hązła

    (Institutes of Mathematics and Computer Science, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;)

  • Ali Jadbabaie

    (Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;)

  • Elchanan Mossel

    (Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;)

  • M. Amin Rahimian

    (Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260)

Abstract
We study the computations that Bayesian agents undertake when exchanging opinions over a network. The agents act repeatedly on their private information and take myopic actions that maximize their expected utility according to a fully rational posterior belief. We show that such computations are NP-hard for two natural utility functions: one with binary actions and another where agents reveal their posterior beliefs. In fact, we show that distinguishing between posteriors that are concentrated on different states of the world is NP-hard. Therefore, even approximating the Bayesian posterior beliefs is hard. We also describe a natural search algorithm to compute agents’ actions, which we call elimination of impossible signals , and show that if the network is transitive, the algorithm can be modified to run in polynomial time.

Suggested Citation

  • Jan Hązła & Ali Jadbabaie & Elchanan Mossel & M. Amin Rahimian, 2021. "Bayesian Decision Making in Groups is Hard," Operations Research, INFORMS, vol. 69(2), pages 632-654, March.
  • Handle: RePEc:inm:oropre:v:69:y:2021:i:2:p:632-654
    DOI: 10.1287/opre.2020.2000
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2020.2000
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2020.2000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lones Smith & Peter Sorensen, 2000. "Pathological Outcomes of Observational Learning," Econometrica, Econometric Society, vol. 68(2), pages 371-398, March.
    2. Gale, Douglas & Kariv, Shachar, 2003. "Bayesian learning in social networks," Games and Economic Behavior, Elsevier, vol. 45(2), pages 329-346, November.
    3. , & , & ,, 2014. "Dynamics of information exchange in endogenous social networks," Theoretical Economics, Econometric Society, vol. 9(1), January.
    4. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    5. Venkatesh Bala & Sanjeev Goyal, 1998. "Learning from Neighbours," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 595-621.
    6. Rosenberg, Dinah & Solan, Eilon & Vieille, Nicolas, 2009. "Informational externalities and emergence of consensus," Games and Economic Behavior, Elsevier, vol. 66(2), pages 979-994, July.
    7. Li, Wei & Tan, Xu, 2020. "Locally Bayesian learning in networks," Theoretical Economics, Econometric Society, vol. 15(1), January.
    8. Elchanan Mossel & Manuel Mueller‐Frank & Allan Sly & Omer Tamuz, 2020. "Social Learning Equilibria," Econometrica, Econometric Society, vol. 88(3), pages 1235-1267, May.
    9. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    10. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    11. Ali, S. Nageeb, 2018. "Herding with costly information," Journal of Economic Theory, Elsevier, vol. 175(C), pages 713-729.
    12. Sushil Bikhchandani & David Hirshleifer & Ivo Welch, 1998. "Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades," Journal of Economic Perspectives, American Economic Association, vol. 12(3), pages 151-170, Summer.
    13. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    14. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    15. ,, 2013. "A general framework for rational learning in social networks," Theoretical Economics, Econometric Society, vol. 8(1), January.
    16. Christos H. Papadimitriou & John N. Tsitsiklis, 1987. "The Complexity of Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 441-450, August.
    17. Velupillai, K., 2000. "Computable Economics: The Arne Ryde Memorial Lectures," OUP Catalogue, Oxford University Press, number 9780198295273.
    18. Elchanan Mossel & Allan Sly & Omer Tamuz, 2015. "Strategic Learning and the Topology of Social Networks," Econometrica, Econometric Society, vol. 83(5), pages 1755-1794, September.
    19. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    20. Erik Eyster & Matthew Rabin, 2014. "Extensive Imitation is Irrational and Harmful," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1861-1898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arieli, Itai & Babichenko, Yakov & Shlomov, Segev, 2021. "Virtually additive learning," Journal of Economic Theory, Elsevier, vol. 197(C).
    2. Delia Coculescu & Médéric Motte & Huyên Pham, 2024. "Opinion dynamics in communities with major influencers and implicit social influence via mean-field approximation," Mathematics and Financial Economics, Springer, volume 18, number 7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Huihui & Pivato, Marcus, 2021. "Deliberation and epistemic democracy," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 138-167.
    2. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    3. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    4. Pooya Molavi & Ceyhun Eksin & Alejandro Ribeiro & Ali Jadbabaie, 2016. "Learning to Coordinate in Social Networks," Operations Research, INFORMS, vol. 64(3), pages 605-621, June.
    5. Delia Coculescu & Médéric Motte & Huyên Pham, 2024. "Opinion dynamics in communities with major influencers and implicit social influence via mean-field approximation," Mathematics and Financial Economics, Springer, volume 18, number 7, December.
    6. , & ,, 2015. "Information diffusion in networks through social learning," Theoretical Economics, Econometric Society, vol. 10(3), September.
    7. Li, Wei & Tan, Xu, 2021. "Cognitively-constrained learning from neighbors," Games and Economic Behavior, Elsevier, vol. 129(C), pages 32-54.
    8. Syngjoo Choi & Edoardo Gallo & Shachar Kariv, 2015. "Networks in the laboratory," Cambridge Working Papers in Economics 1551, Faculty of Economics, University of Cambridge.
    9. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    10. Sushil Bikhchandani & David Hirshleifer & Omer Tamuz & Ivo Welch, 2024. "Information Cascades and Social Learning," Journal of Economic Literature, American Economic Association, vol. 62(3), pages 1040-1093, September.
    11. James C. D. Fisher & John Wooders, 2017. "Interacting information cascades: on the movement of conventions between groups," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(1), pages 211-231, January.
    12. Fernandes, Marcos R., 2023. "Confirmation bias in social networks," Mathematical Social Sciences, Elsevier, vol. 123(C), pages 59-76.
    13. Emilien Macault, 2022. "Stochastic Consensus and the Shadow of Doubt," Papers 2201.12100, arXiv.org.
    14. Azomahou, T. & Opolot, D., 2014. "Beliefs dynamics in communication networks," MERIT Working Papers 2014-034, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    15. Arieli, Itai & Babichenko, Yakov & Shlomov, Segev, 2021. "Virtually additive learning," Journal of Economic Theory, Elsevier, vol. 197(C).
    16. Sebastiano Della Lena, 2019. "Non-Bayesian Social Learning and the Spread of Misinformation in Networks," Working Papers 2019:09, Department of Economics, University of Venice "Ca' Foscari".
    17. Mueller-Frank, Manuel & Arieliy, Itai, 2015. "A General Model of Boundedly Rational Observational Learning: Theory and Experiment," IESE Research Papers D/1120, IESE Business School.
    18. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    19. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    20. Ilan Lobel & Evan Sadler, 2016. "Preferences, Homophily, and Social Learning," Operations Research, INFORMS, vol. 64(3), pages 564-584, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:69:y:2021:i:2:p:632-654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.