2 per year. Whereas, at normal and high speeds, R161 shows the highest value of 12.38 and 17.33 tons CO2 per year, respectively. R1243zf, 1234yf, and R450A are the best alternative refrigerants to R134a."> 2 per year. Whereas, at normal and high speeds, R161 shows the highest value of 12.38 and 17.33 tons CO2 per year, respectively. R1243zf, 1234yf, and R450A are the best alternative refrigerants to R134a.">
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/ids/ijgeni/v46y2024i6p693-717.html
   My bibliography  Save this article

Thermodynamic and carbon emission analysis with low GWP refrigerants in automobile air conditioning system

Author

Listed:
  • Salma Khatoon
  • Munawar Nawab Karimi
Abstract
Automotive air conditioning systems negatively impact the environment through emissions. These emissions are impacted by ambient temperature and engine speed. Hence, this paper compares thermodynamic performance and carbon emissions of the low GWP refrigerants such as R1234yf, R1243zf, R450A, R143m, and R161 against R134a at different evaporator, condenser, and ambient temperatures and engine speeds. It is found that higher ambient temperatures lead to higher work consumption. Also, indirect emissions have a positive correlation with engine speed. After R161, refrigerant R134a has the highest input power, total exergy destruction, and cooling capacity. R1243zf, R143m, and R450A show approximately similar cooling capacities. Furthermore, at idle speed, R134a indicates the highest Total Equivalent Warming Impact (TEWI) of 7.65 tons CO2 per year. Whereas, at normal and high speeds, R161 shows the highest value of 12.38 and 17.33 tons CO2 per year, respectively. R1243zf, 1234yf, and R450A are the best alternative refrigerants to R134a.

Suggested Citation

  • Salma Khatoon & Munawar Nawab Karimi, 2024. "Thermodynamic and carbon emission analysis with low GWP refrigerants in automobile air conditioning system," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 46(6), pages 693-717.
  • Handle: RePEc:ids:ijgeni:v:46:y:2024:i:6:p:693-717
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=141899
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijgeni:v:46:y:2024:i:6:p:693-717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=13 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.