[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9681-d1172922.html
   My bibliography  Save this article

Decomposing and Decoupling the Energy-Related Carbon Emissions in the Beijing–Tianjin–Hebei Region Using the Extended LMDI and Tapio Index Model

Author

Listed:
  • Qifan Guan

    (School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China)

Abstract
To deal with global warming and fulfil China’s commitment to carbon neutrality by 2060, reducing carbon emissions has become a necessary requirement. As one of China’s three major economic circles, the Beijing–Tianjin–Hebei region (B–T–H) has a great responsibility. This paper measures energy-related carbon emissions of B–T–H from 2005 to 2019 and uses the extended Logarithmic Mean Division Index (LMDI) to decompose the carbon emission effect factors. Then, a Tapio index model was constructed to analyse the contribution of each effect factor. The results showed that: (1) the total carbon emissions of B–T–H increased by 1.5 times, with Hebei having the highest proportion, followed by Tianjin and Beijing. Coal was the biggest emitter in all three regions. Natural gas emissions in Tianjin and Beijing were growing rapidly. (2) Consistent with most studies, economic development promoted carbon emissions, while energy intensity and energy structure inhibited them. It was found that innovative factors also have significant impacts: research and development efficiency was the primary emission inhibition factor in Hebei and the secondary inhibition factor in Tianjin and Beijing. The effects of investment intensity and research and development intensity differed between regions. (3) Beijing took the lead in achieving strong decoupling, followed by Tianjin. Hebei maintained weak decoupling. Innovative factors also played an important role in decoupling, which cannot be ignored in achieving emission reduction targets.

Suggested Citation

  • Qifan Guan, 2023. "Decomposing and Decoupling the Energy-Related Carbon Emissions in the Beijing–Tianjin–Hebei Region Using the Extended LMDI and Tapio Index Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9681-:d:1172922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    2. Shan Yang & Shangkai Zhu & Gao Deng & Huan Li, 2022. "Study on Influencing Factors and Spatial Effects of Carbon Emissions Based on Logarithmic Mean Divisia Index Model: A Case Study of Hunan Province," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    3. Yi Chai & Xueqin Lin & Dai Wang, 2021. "Industrial Structure Transformation and Layout Optimization of Beijing-Tianjin-Hebei Region under Carbon Emission Constraints," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    4. Yu Hao & Zirui Huang & Haitao Wu, 2019. "Do Carbon Emissions and Economic Growth Decouple in China? An Empirical Analysis Based on Provincial Panel Data," Energies, MDPI, vol. 12(12), pages 1-15, June.
    5. Menglu Li & Wei Wang & Gejirifu De & Xionghua Ji & Zhongfu Tan, 2018. "Forecasting Carbon Emissions Related to Energy Consumption in Beijing-Tianjin-Hebei Region Based on Grey Prediction Theory and Extreme Learning Machine Optimized by Support Vector Machine Algorithm," Energies, MDPI, vol. 11(9), pages 1-15, September.
    6. Runde Gu & Chunfa Li & Dongdong Li & Yangyang Yang & Shan Gu, 2022. "The Impact of Rationalization and Upgrading of Industrial Structure on Carbon Emissions in the Beijing-Tianjin-Hebei Urban Agglomeration," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    7. Ke Liu & Mingxue Zhao & Xinyue Xie & Qian Zhou, 2022. "Study on the Decoupling Relationship and Rebound Effect between Economic Growth and Carbon Emissions in Central China," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    8. Ting Lou & Jianhui Ma & Yu Liu & Lei Yu & Zhaopeng Guo & Yan He, 2022. "A Heterogeneity Study of Carbon Emissions Driving Factors in Beijing-Tianjin-Hebei Region, China, Based on PGTWR Model," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    9. Feng Feng & Linlin Peng, 2019. "Is There Any Difference in the Effect of Different R and D Sources on Carbon Intensity in China?," Sustainability, MDPI, vol. 11(6), pages 1-12, March.
    10. Huiqiang Ma & Jiale Liu & Jianchao Xi, 2022. "Decoupling and decomposition analysis of carbon emissions in Beijing’s tourism traffic," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5258-5274, April.
    11. Weiwu Wang & Huan Chen & Lizhong Wang & Xinyu Li & Danyi Mao & Shan Wang, 2022. "Exploration of Spatio-Temporal Characteristics of Carbon Emissions from Energy Consumption and Their Driving Factors: A Case Analysis of the Yangtze River Delta, China," IJERPH, MDPI, vol. 19(15), pages 1-25, August.
    12. Rui Jiang & Yulin Zhou & Rongrong Li, 2018. "Moving to a Low-Carbon Economy in China: Decoupling and Decomposition Analysis of Emission and Economy from a Sector Perspective," Sustainability, MDPI, vol. 10(4), pages 1-12, March.
    13. Lei Jin & Keran Duan & Chunming Shi & Xianwei Ju, 2017. "The Impact of Technological Progress in the Energy Sector on Carbon Emissions: An Empirical Analysis from China," IJERPH, MDPI, vol. 14(12), pages 1-14, December.
    14. Cheng Huang & Yang Qu & Lingfang Huang & Xing Meng & Yulong Chen & Ping Pan, 2022. "Quantifying the Impact of Urban Form and Socio-Economic Development on China’s Carbon Emissions," IJERPH, MDPI, vol. 19(5), pages 1-14, March.
    15. Jiancheng Qin & Lei Gao & Weihu Tu & Jing He & Jingzhe Tang & Shuying Ma & Xiaoyang Zhao & Xingzhe Zhu & Karthikeyan Brindha & Hui Tao, 2022. "Decomposition and Decoupling Analysis of Carbon Emissions in Xinjiang Energy Base, China," Energies, MDPI, vol. 15(15), pages 1-18, July.
    16. Kahia, Montassar & Aïssa, Mohamed Safouane Ben & Lanouar, Charfeddine, 2017. "Renewable and non-renewable energy use - economic growth nexus: The case of MENA Net Oil Importing Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 127-140.
    17. Yi Liang & Dongxiao Niu & Weiwei Zhou & Yingying Fan, 2018. "Decomposition Analysis of Carbon Emissions from Energy Consumption in Beijing-Tianjin-Hebei, China: A Weighted-Combination Model Based on Logarithmic Mean Divisia Index and Shapley Value," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    18. Xiaochun Zhao & Mei Jiang & Wei Zhang, 2022. "Decoupling between Economic Development and Carbon Emissions and Its Driving Factors: Evidence from China," IJERPH, MDPI, vol. 19(5), pages 1-15, March.
    19. Chun Fu & Weiqi Min & Hubei Liu, 2022. "Decomposition and Decoupling Analysis of Carbon Emissions from Cultivated Land Use in China’s Main Agricultural Producing Areas," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    20. Zhe Zhao & Xin Xuan & Fan Zhang & Ying Cai & Xiaoyu Wang, 2022. "Scenario Analysis of Renewable Energy Development and Carbon Emission in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(10), pages 1-13, September.
    21. Tao Shen & Runpu Hu & Peilin Hu & Zhang Tao, 2023. "Decoupling between Economic Growth and Carbon Emissions: Based on Four Major Regions in China," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    22. Chuyu Xia & Yan Li & Yanmei Ye & Zhou Shi & Jingming Liu, 2017. "Decomposed Driving Factors of Carbon Emissions and Scenario Analyses of Low-Carbon Transformation in 2020 and 2030 for Zhejiang Province," Energies, MDPI, vol. 10(11), pages 1-16, October.
    23. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
    24. Zhaosu Meng & Huan Wang & Baona Wang, 2018. "Empirical Analysis of Carbon Emission Accounting and Influencing Factors of Energy Consumption in China," IJERPH, MDPI, vol. 15(11), pages 1-15, November.
    25. Pengnan Xiao & Yuan Zhang & Peng Qian & Mengyao Lu & Zupeng Yu & Jie Xu & Chong Zhao & Huilin Qian, 2022. "Spatiotemporal Characteristics, Decoupling Effect and Driving Factors of Carbon Emission from Cultivated Land Utilization in Hubei Province," IJERPH, MDPI, vol. 19(15), pages 1-32, July.
    26. Jianguo Zhou & Baoling Jin & Shijuan Du & Ping Zhang, 2018. "Scenario Analysis of Carbon Emissions of Beijing-Tianjin-Hebei," Energies, MDPI, vol. 11(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linghui Zheng & Yanli Sun & Yang Yu, 2024. "Carbon Peak Control Strategies and Pathway Selection in Dalian City: A Hybrid Approach with STIRPAT and GA-BP Neural Networks," Sustainability, MDPI, vol. 16(19), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyuan Fu & Qing Wang, 2022. "Spatial and Temporal Distribution and the Driving Factors of Carbon Emissions from Urban Production Energy Consumption," IJERPH, MDPI, vol. 19(19), pages 1-29, September.
    2. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
    3. Zhou, Di & Huang, Qing & Chong, Zhaohui, 2022. "Analysis on the effect and mechanism of land misallocation on carbon emissions efficiency: Evidence from China," Land Use Policy, Elsevier, vol. 121(C).
    4. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    5. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
    6. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    7. Sipan Li & Qunxi Gong & Shaolei Yang, 2019. "Analysis of the Agricultural Economy and Agricultural Pollution Using the Decoupling Index in Chengdu, China," IJERPH, MDPI, vol. 16(21), pages 1-11, October.
    8. Román, Rocío & Cansino, José M. & Rodas, José A., 2018. "Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications," Renewable Energy, Elsevier, vol. 116(PA), pages 402-411.
    9. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    10. Sheng-Wen Tseng, 2019. "Analysis of Energy-Related Carbon Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    11. Kamalova Mariyakhan & Elyas Abdulahi Mohamued & Muhammad Asif Khan & József Popp & Judit Oláh, 2020. "Does the Level of Absorptive Capacity Matter for Carbon Intensity? Evidence from the USA and China," Energies, MDPI, vol. 13(2), pages 1-18, January.
    12. Xiaopeng Wang & Xiang Chen & Yiman Cheng & Luyao Zhou & Yi Li & Yongliang Yang, 2020. "Factorial Decomposition of the Energy Footprint of the Shaoxing Textile Industry," Energies, MDPI, vol. 13(7), pages 1-13, April.
    13. Gen Li & Shihong Zeng & Tengfei Li & Qiao Peng & Muhammad Irfan, 2023. "Analysing the Effect of Energy Intensity on Carbon Emission Reduction in Beijing," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    14. Shaoqi Sun & Yuanli Xie & Yunmei Li & Kansheng Yuan & Lifa Hu, 2022. "Analysis of Dynamic Evolution and Spatial-Temporal Heterogeneity of Carbon Emissions at County Level along “The Belt and Road”—A Case Study of Northwest China," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
    15. Hosein Mohammadi & Sayed Saghaian & Bahareh Zandi Dareh Gharibi, 2023. "Renewable and Non-Renewable Energy Consumption and Its Impact on Economic Growth," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    16. Faik Bilgili & Daniel Balsalobre-Lorente & Sevda Kuşkaya & Mohammed Alnour & Seyit Önderol & Mohammad Enamul Hoque, 2024. "Are research and development on energy efficiency and energy sources effective in the level of CO2 emissions? Fresh evidence from EU data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24183-24219, September.
    17. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    18. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    19. Yang Zhang & Wenlong Li & Jiawen Sun & Haidong Zhao & Haiying Lin, 2023. "A Research Paradigm for Industrial Spatial Layout Optimization and High-Quality Development in The Context of Carbon Peaking," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    20. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9681-:d:1172922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.