[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2253-d222820.html
   My bibliography  Save this article

Exploring the Effects of Government Policies on Economic Performance: Evidence Using Panel Data for Korean Renewable Energy Technology Firms

Author

Listed:
  • Bongsuk Sung

    (Department of International Trade, Kyonggi University, 154–42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Korea)

  • Myoung Shik Choi

    (Department of Economics, Kyonggi University, 154–42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Korea)

  • Woo-Yong Song

    (Department of Management and Accounting, Habat National University, 125, Dongseodae-ro, Yuseong-gu, Daejeon 34518, Korea)

Abstract
Previous studies have investigated how government policies on renewable energy technology (RET) affect economic performance at the industrial level. However, each firm in the RET industry is heterogeneous in terms of their capacities, resources, and the amount of public subsidies they receive. Considering the context in which public subsidies are provided to firms, this study econometrically investigates the effects of government policies on firms’ financial performance using panel data from the Korean RET industry. We consider the results of various panel framework tests; establish a panel vector autoregressive model in first differences; and test the dynamic relationships between firms’ financial performance, government subsidies (R&D- and non-R&D-related), firm size and age, and organizational slack, using a bias-corrected least squares dummy variable estimator. We find that R&D- and non-R&D-related subsidies positively affect firms’ financial performance in the long run. In the short run, there are bidirectional positive causal relationships between firms’ financial performance and organizational slack (and non-R&D-related subsidy), and firm size and non-R&D-related subsidy. A positive short-run relationship runs from R&D-related subsidy to firms’ financial performance, from firm age to non-R&D-related subsidy, and from firm size to firm age. Further, there are dynamic effects in all estimations, demonstrating that the dependent variables of the previous period enhance their values in the current period. The results provide some policy and strategic implications.

Suggested Citation

  • Bongsuk Sung & Myoung Shik Choi & Woo-Yong Song, 2019. "Exploring the Effects of Government Policies on Economic Performance: Evidence Using Panel Data for Korean Renewable Energy Technology Firms," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2253-:d:222820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felix Groba & Jing Cao, 2015. "Chinese Renewable Energy Technology Exports: The Role of Policy, Innovation and Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(2), pages 243-283, February.
    2. Zhang, Huiming & Li, Lianshui & Zhou, Dequn & Zhou, Peng, 2014. "Political connections, government subsidies and firm financial performance: Evidence from renewable energy manufacturing in China," Renewable Energy, Elsevier, vol. 63(C), pages 330-336.
    3. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
    4. Coad, Alex & Segarra, Agustí & Teruel, Mercedes, 2016. "Innovation and firm growth: Does firm age play a role?," Research Policy, Elsevier, vol. 45(2), pages 387-400.
    5. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    6. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    7. Schmidt-Ehmcke, Jens & Zloczysti, Petra & Braun, Frauke G, 2010. "Innovative Activity in Wind and Solar Technology: Empirical Evidence on Knowledge Spillovers Using Patent Data," CEPR Discussion Papers 7865, C.E.P.R. Discussion Papers.
    8. Meijer, Ineke S.M. & Hekkert, Marko P. & Koppenjan, Joop F.M., 2007. "The influence of perceived uncertainty on entrepreneurial action in emerging renewable energy technology; biomass gasification projects in the Netherlands," Energy Policy, Elsevier, vol. 35(11), pages 5836-5854, November.
    9. Marc J. Melitz, 2003. "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," Econometrica, Econometric Society, vol. 71(6), pages 1695-1725, November.
    10. Bongsuk Sung & Cui Wen, 2018. "Causal Dynamic Relationships between Political–Economic Factors and Export Performance in the Renewable Energy Technologies Market," Energies, MDPI, vol. 11(4), pages 1-18, April.
    11. Fabio Iraldo & Francesco Testa & Vlasis Oikonomou & Michela Melis & Marco Frey & Eise Spijker, 2009. "A literature review on the links between environmental regulation and competitiveness," Working Papers 200904, Scuola Superiore Sant'Anna of Pisa, Istituto di Management.
    12. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    13. Zhang, Dayong & Cao, Hong & Zou, Peijiang, 2016. "Exuberance in China's renewable energy investment: Rationality, capital structure and implications with firm level evidence," Energy Policy, Elsevier, vol. 95(C), pages 468-478.
    14. Antoine Dechezleprêtre & Misato Sato, 2017. "The Impacts of Environmental Regulations on Competitiveness," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 183-206.
    15. Dirk Czarnitzki, 2006. "Research And Development In Small And Medium‐Sized Enterprises: The Role Of Financial Constraints And Public Funding," Scottish Journal of Political Economy, Scottish Economic Society, vol. 53(3), pages 335-357, July.
    16. Ludig, Sylvie & Schmid, Eva & Haller, Markus & Bauer, Nico, 2015. "Assessment of transformation strategies for the German power sector under the uncertainty of demand development and technology availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 143-156.
    17. Plank, Josef & Doblinger, Claudia, 2018. "The firm-level innovation impact of public R&D funding: Evidence from the German renewable energy sector," Energy Policy, Elsevier, vol. 113(C), pages 430-438.
    18. Bruno, Giovanni S.F., 2005. "Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models," Economics Letters, Elsevier, vol. 87(3), pages 361-366, June.
    19. Gillian Bristow, 2005. "Everyone's a 'winner': problematising the discourse of regional competitiveness," Journal of Economic Geography, Oxford University Press, vol. 5(3), pages 285-304, June.
    20. Rout, Ullash K. & Blesl, Markus & Fahl, Ulrich & Remme, Uwe & Voß, Alfred, 2009. "Uncertainty in the learning rates of energy technologies: An experiment in a global multi-regional energy system model," Energy Policy, Elsevier, vol. 37(11), pages 4927-4942, November.
    21. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    22. Felix Groba, 2014. "Determinants of trade with solar energy technology components: evidence on the porter hypothesis?," Applied Economics, Taylor & Francis Journals, vol. 46(5), pages 503-526, February.
    23. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    24. Feldman, Maryann P. & Kelley, Maryellen R., 2006. "The ex ante assessment of knowledge spillovers: Government R&D policy, economic incentives and private firm behavior," Research Policy, Elsevier, vol. 35(10), pages 1509-1521, December.
    25. Huiming Zhang & Yu Zheng & Dequn Zhou & Peifeng Zhu, 2015. "Which Subsidy Mode Improves the Financial Performance of Renewable Energy Firms? A Panel Data Analysis of Wind and Solar Energy Companies between 2009 and 2014," Sustainability, MDPI, vol. 7(12), pages 1-13, December.
    26. Kim, Kyunam & Kim, Yeonbae, 2015. "Role of policy in innovation and international trade of renewable energy technology: Empirical study of solar PV and wind power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 717-727.
    27. Costantini, Valeria & Crespi, Francesco, 2008. "Environmental regulation and the export dynamics of energy technologies," Ecological Economics, Elsevier, vol. 66(2-3), pages 447-460, June.
    28. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    29. Meuleman, Miguel & De Maeseneire, Wouter, 2012. "Do R&D subsidies affect SMEs’ access to external financing?," Research Policy, Elsevier, vol. 41(3), pages 580-591.
    30. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    31. Tuomas Takalo & Tanja Tanayama, 2010. "Adverse selection and financing of innovation: is there a need for R&D subsidies?," The Journal of Technology Transfer, Springer, vol. 35(1), pages 16-41, February.
    32. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    33. Sung, Bongsuk, 2015. "Public policy supports and export performance of bioenergy technologies: A dynamic panel approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 477-495.
    34. Sung, Bongsuk & Song, Woo-Yong, 2014. "How government policies affect the export dynamics of renewable energy technologies: A subsectoral analysis," Energy, Elsevier, vol. 69(C), pages 843-859.
    35. Jaraitė, Jūratė & Kažukauskas, Andrius, 2013. "The profitability of electricity generating firms and policies promoting renewable energy," Energy Economics, Elsevier, vol. 40(C), pages 858-865.
    36. Robert Salomon & J. Myles Shaver, 2005. "Export and domestic sales: their interrelationship and determinants," Strategic Management Journal, Wiley Blackwell, vol. 26(9), pages 855-871, September.
    37. Sarah Demeulemeester & Hanna Hottenrott, 2015. "R&D subsidies and firms' cost of debt," Working Papers of Department of Management, Strategy and Innovation, Leuven 516028, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
    38. Zheng-Xia He & Shi-Chun Xu & Qin-Bin Li & Bin Zhao, 2018. "Factors That Influence Renewable Energy Technological Innovation in China: A Dynamic Panel Approach," Sustainability, MDPI, vol. 10(1), pages 1-30, January.
    39. Horváthová, Eva, 2010. "Does environmental performance affect financial performance? A meta-analysis," Ecological Economics, Elsevier, vol. 70(1), pages 52-59, November.
    40. Peter Pedroni, 2000. "Fully Modified OLS for Heterogeneous Cointegrated Panels," Department of Economics Working Papers 2000-03, Department of Economics, Williams College.
    41. Costantini, Valeria & Mazzanti, Massimiliano, 2012. "On the green and innovative side of trade competitiveness? The impact of environmental policies and innovation on EU exports," Research Policy, Elsevier, vol. 41(1), pages 132-153.
    42. Rammer, Christian & Gottschalk, Sandra & Peneder, Michael & Wörter, Martin & Stucki, Tobias & Arvanitis, Spyros, 2017. "Does energy policy hurt international competitiveness of firms? A comparative study for Germany, Switzerland and Austria," Energy Policy, Elsevier, vol. 109(C), pages 154-180.
    43. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
    44. Weiwei Liu & Xiandong Xu & Zhile Yang & Jianyu Zhao & Jing Xing, 2016. "Impacts of FDI Renewable Energy Technology Spillover on China’s Energy Industry Performance," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    45. Sung, Bongsuk & Song, Woo-Yong, 2013. "Causality between public policies and exports of renewable energy technologies," Energy Policy, Elsevier, vol. 55(C), pages 95-104.
    46. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    47. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    48. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    49. Corsatea, Teodora Diana & Giaccaria, Sergio & Arántegui, Roberto Lacal, 2014. "The role of sources of finance on the development of wind technology," Renewable Energy, Elsevier, vol. 66(C), pages 140-149.
    50. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    51. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    52. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bongsuk Sung & Woo-Yong Song, 2021. "Are Political Factors More Relevant Than Economic Factors in Firm-Level Renewable Energy Technology Export? Evidence from Path Analysis," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    2. Ziyu Guo & Gang Chen & Yang Ding, 2023. "Innovation-Driven Policies, Corporate Governance Structure and Total Factor Productivity in Chinese Sports Sector: Evidence from Listed Sports Firms," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    3. Wan-Jiun Chen, 2022. "Toward Sustainability: Dynamics of Total Carbon Dioxide Emissions, Aggregate Income, Non-Renewable Energy, and Renewable Power," Sustainability, MDPI, vol. 14(5), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sung, Bongsuk, 2019. "Do government subsidies promote firm-level innovation? Evidence from the Korean renewable energy technology industry," Energy Policy, Elsevier, vol. 132(C), pages 1333-1344.
    2. Bongsuk Sung & Woo-Yong Song, 2021. "Are Political Factors More Relevant Than Economic Factors in Firm-Level Renewable Energy Technology Export? Evidence from Path Analysis," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    3. Bongsuk Sung & Woo-Yong Song, 2017. "Does Dynamic Efficiency of Public Policy Promote Export Prformance? Evidence from Bioenergy Technology Sector," Energies, MDPI, vol. 10(12), pages 1-18, December.
    4. Bongsuk Sung & Cui Wen, 2018. "Causal Dynamic Relationships between Political–Economic Factors and Export Performance in the Renewable Energy Technologies Market," Energies, MDPI, vol. 11(4), pages 1-18, April.
    5. Sung, Bongsuk & Soh, Jin Young & Park, Chun Gun, 2022. "Comparing government support, firm heterogeneity, and inter-firm spillovers for productivity enhancement: Evidence from the Korean solar energy technology industry," Energy, Elsevier, vol. 246(C).
    6. Bongsuk Sung & Myung-Bae Yeom & Hong-Gi Kim, 2017. "Eco-Efficiency of Government Policy and Exports in the Bioenergy Technology Market," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    7. Sung, Bongsuk & Song, Woo-Yong, 2014. "How government policies affect the export dynamics of renewable energy technologies: A subsectoral analysis," Energy, Elsevier, vol. 69(C), pages 843-859.
    8. Marra, Alessandro & Colantonio, Emiliano, 2023. "On public policies in the energy transition: Evidence on the role of socio-technical regimes for renewable technologies," Energy Economics, Elsevier, vol. 128(C).
    9. Bongsuk Sung & Sang-Do Park, 2018. "Who Drives the Transition to a Renewable-Energy Economy? Multi-Actor Perspective on Social Innovation," Sustainability, MDPI, vol. 10(2), pages 1-32, February.
    10. Sung, Bongsuk, 2015. "Public policy supports and export performance of bioenergy technologies: A dynamic panel approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 477-495.
    11. Sung, Bongsuk & Song, Woo-Yong & Park, Sang-Do, 2018. "How foreign direct investment affects CO2 emission levels in the Chinese manufacturing industry: Evidence from panel data," Economic Systems, Elsevier, vol. 42(2), pages 320-331.
    12. Ogura, Yasuhiro, 2020. "Policy as a “porter” of RE component export or import? Evidence from PV/wind energy in OECD and BRICS," Energy Economics, Elsevier, vol. 86(C).
    13. MAÏ ASSAN CHEDI, Maman, 2022. "Does Defence Expenditure Affect Education and Health expenditures in Saharan Africa?," African Journal of Economic Review, African Journal of Economic Review, vol. 10(4), September.
    14. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    15. He, Zhengxia & Cao, Changshuai & Kuai, Leyi & Zhou, Yanqing & Wang, Jianming, 2022. "Impact of policies on wind power innovation at different income levels: Regional differences in China based on dynamic panel estimation," Technology in Society, Elsevier, vol. 71(C).
    16. Sonia A. Agudelo & Hector Sala, 2016. "Wage setting in the Colombian manufacturing industry," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 24(1), pages 99-134, January.
    17. Bettina Becker, 2015. "Public R&D Policies And Private R&D Investment: A Survey Of The Empirical Evidence," Journal of Economic Surveys, Wiley Blackwell, vol. 29(5), pages 917-942, December.
    18. Sung, Bongsuk & Song, Woo-Yong, 2013. "Causality between public policies and exports of renewable energy technologies," Energy Policy, Elsevier, vol. 55(C), pages 95-104.
    19. Bettina Becker, 2013. "The Determinants of R&D Investment: A Survey of the Empirical Research," Discussion Paper Series 2013_09, Department of Economics, Loughborough University, revised Sep 2013.
    20. Naima Chrid & Sami Saafi & Mohamed Chakroun, 2021. "Export Upgrading and Economic Growth: a Panel Cointegration and Causality Analysis," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(2), pages 811-841, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2253-:d:222820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.