[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v7y2018i3p49-d162777.html
   My bibliography  Save this article

Metals for Fuels? The Raw Material Shift by Energy-Efficient Transport Systems in Europe

Author

Listed:
  • Jens Teubler

    (Wuppertal Institut für Klima, Umwelt, Energie gGmbH, Döppersberg 19, 42103 Wuppertal, Germany)

  • Sebastian Kiefer

    (Wuppertal Institut für Klima, Umwelt, Energie gGmbH, Döppersberg 19, 42103 Wuppertal, Germany)

  • Christa Liedtke

    (Wuppertal Institut für Klima, Umwelt, Energie gGmbH, Döppersberg 19, 42103 Wuppertal, Germany)

Abstract
The long-term transition towards a low-carbon transport sector is a key strategy in Europe. This includes the replacement of fossil fuels, modal shifts towards public transport as well as higher energy efficiency in the transport sector overall. While these energy savings are likely to reduce the direct greenhouse gas emissions of transport, they also require the production of new and different vehicles. This study analyses in detail whether final energy savings in the transport sector also induce savings for material resources from nature if the production of future vehicles is considered. The results for 28 member states in 2030 indicate that energy efficiency in the transport sector leads to lower carbon emissions as well as resource use savings. However, energy-efficient transport sectors can have a significant impact on the demand for metals in Europe. An additional annual demand for 28.4 Mt of metal ores was calculated from the personal transport sector in 2030 alone. The additional metal ores from semiprecious metals (e.g., copper) amount to 12.0 Mt, from precious metals (e.g., gold) to 9.1 Mt and from other metals (e.g., lithium) to 11.7 Mt, with small savings for ferrous metal ores (−4.6 Mt).

Suggested Citation

  • Jens Teubler & Sebastian Kiefer & Christa Liedtke, 2018. "Metals for Fuels? The Raw Material Shift by Energy-Efficient Transport Systems in Europe," Resources, MDPI, vol. 7(3), pages 1-17, August.
  • Handle: RePEc:gam:jresou:v:7:y:2018:i:3:p:49-:d:162777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/7/3/49/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/7/3/49/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ürge-Vorsatz, Diana & Kelemen, Agnes & Tirado-Herrero, Sergio & Thomas, Stefan & Thema, Johannes & Mzavanadze, Nora & Hauptstock, Dorothea & Suerkemper, Felix & Teubler, Jens & Gupta, Mukesh & Chatter, 2016. "Measuring multiple impacts of low-carbon energy options in a green economy context," Applied Energy, Elsevier, vol. 179(C), pages 1409-1426.
    2. Kleijn, René & van der Voet, Ester & Kramer, Gert Jan & van Oers, Lauran & van der Giesen, Coen, 2011. "Metal requirements of low-carbon power generation," Energy, Elsevier, vol. 36(9), pages 5640-5648.
    3. Roelich, Katy & Dawson, David A. & Purnell, Phil & Knoeri, Christof & Revell, Ruairi & Busch, Jonathan & Steinberger, Julia K., 2014. "Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity," Applied Energy, Elsevier, vol. 123(C), pages 378-386.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    2. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    3. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    4. Hache, Emmanuel & Simoën, Marine & Seck, Gondia Sokhna & Bonnet, Clément & Jabberi, Aymen & Carcanague, Samuel, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, Elsevier, vol. 163(C), pages 114-133.
    5. Kimon Keramidas & Silvana Mima & Adrien Bidaud, 2024. "Opportunities and roadblocks in the decarbonisation of the global steel sector: A demand and production modelling approach," Post-Print hal-04383385, HAL.
    6. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    7. Nicolas Charles & Gaétan Lefebvre & Rémy Tuloup & Audrey Carreaud & Antoine Boubault & Anne-Sophie Serrand & Maxime Picault & Virginie Piguet & Valeria Manzin & Fabien Deswarte & Julien Aupoil, 2023. "Mineral Resource Abundance: An Assessment Methodology for a Responsible Use of Mineral Raw Materials in Downstream Industries," Sustainability, MDPI, vol. 15(24), pages 1-39, December.
    8. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    9. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    10. Said, Fathin Faizah & Babatunde, Kazeem Alasinrin & Md Nor, Nor Ghani & Mahmoud, Moamin A. & Begum, Rawshan Ara, 2022. "Decarbonizing the Global Electricity Sector through Demand-Side Management: A Systematic Critical Review of Policy Responses," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 71-91.
    11. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions -- A Simulation-Based Case Study of a Single-Family House in Algeria and Germany," Papers 1904.11496, arXiv.org.
    12. Marie K. Schellens & Johanna Gisladottir, 2018. "Critical Natural Resources: Challenging the Current Discourse and Proposal for a Holistic Definition," Resources, MDPI, vol. 7(4), pages 1-28, December.
    13. Miller, Hugh & Dikau, Simon & Svartzman, Romain & Dees, Stéphane, 2023. "The stumbling block in ‘the race of our lives’: transition-critical materials, financial risks and the NGFS climate scenarios," LSE Research Online Documents on Economics 118095, London School of Economics and Political Science, LSE Library.
    14. Harmsen, J.H.M. & Roes, A.L. & Patel, M.K., 2013. "The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios," Energy, Elsevier, vol. 50(C), pages 62-73.
    15. Kim, Junbeum & Guillaume, Bertrand & Chung, Jinwook & Hwang, Yongwoo, 2015. "Critical and precious materials consumption and requirement in wind energy system in the EU 27," Applied Energy, Elsevier, vol. 139(C), pages 327-334.
    16. Samadi, Sascha & Gröne, Marie-Christine & Schneidewind, Uwe & Luhmann, Hans-Jochen & Venjakob, Johannes & Best, Benjamin, 2017. "Sufficiency in energy scenario studies: Taking the potential benefits of lifestyle changes into account," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 126-134.
    17. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Yunsheng Xie & Peng Wang & Yi Dou & Lei Yang & Songyan Ren & Daiqing Zhao, 2022. "Assessment on the Cost Synergies and Impacts among Measures on Energy Conservation, Decarbonization, and Air Pollutant Reductions Using an MCEE Model: A Case of Guangzhou, China," Energies, MDPI, vol. 15(4), pages 1-22, February.
    19. Benjamin C. McLellan & Eiji Yamasue & Tetsuo Tezuka & Glen Corder & Artem Golev & Damien Giurco, 2016. "Critical Minerals and Energy–Impacts and Limitations of Moving to Unconventional Resources," Resources, MDPI, vol. 5(2), pages 1-40, May.
    20. Reuter, Matthias & Patel, Martin K. & Eichhammer, Wolfgang & Lapillonne, Bruno & Pollier, Karine, 2020. "A comprehensive indicator set for measuring multiple benefits of energy efficiency," Energy Policy, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:7:y:2018:i:3:p:49-:d:162777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.