[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14144-d957283.html
   My bibliography  Save this article

Identifying Seasonal and Diurnal Variations and the Most Frequently Impacted Zone of Aerosols in the Aral Sea Region

Author

Listed:
  • Yongxiao Ge

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    CAS Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Na Wu

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    CAS Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Jilili Abuduwaili

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    CAS Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Rashid Kulmatov

    (Department of Biology, National University of Uzbekistan, Tashkent 100170, Uzbekistan)

  • Gulnura Issanova

    (CAS Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China
    Kazakh Research Institute of Soil Science and Agrochemistry Named after U.U.Uspanov, Almaty 050060, Kazakhstan
    Faculty of Geography and Environmental Sciences, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

  • Galymzhan Saparov

    (CAS Research Center for Ecology and Environment of Central Asia, Urumqi 830011, China
    Kazakh Research Institute of Soil Science and Agrochemistry Named after U.U.Uspanov, Almaty 050060, Kazakhstan)

Abstract
With the desiccation of the Aral Sea, salt–alkali dust storms have increased in frequency and the surrounding environment has deteriorated. In order to increase our understanding of the characteristics and potential impact zone of atmospheric aerosols in the Aral Sea region, we evaluated seasonal and diurnal variation of aerosols and identified the zone most frequently impacted by aerosols from the Aral Sea region using CALIPSO data and the HYSPLIT model. The results showed that polluted dust and dust were the two most commonly observed aerosol subtypes in the Aral Sea region with the two accounting for over 75% of observed aerosols. Occurrence frequencies of polluted dust, clean continental, polluted continental/smoke, and elevated smoke showed obvious seasonal and diurnal variations, while occurrence frequency of dust only showed obvious seasonal variation. Vertically, the occurrence frequencies of all aerosol subtypes except dust showed significant diurnal variation at all levels. The thickness of polluted dust layers and dust layers exhibited same seasonal and diurnal variations with a value of more than 1.0 km year-round, and the layer thickness of clean continental and polluted continental/smoke shared the same seasonal and diurnal variation features. The zone most severely impacted by aerosols from the Aral Sea region, covering an area of approximately 2 million km 2 , was mainly distributed in the vicinity of the Aral Sea region, including western Kazakhstan, and most of Uzbekistan and Turkmenistan. The results provide direct support for positioning monitoring of aeolian dust deposition and human health protection in the Aral Sea region.

Suggested Citation

  • Yongxiao Ge & Na Wu & Jilili Abuduwaili & Rashid Kulmatov & Gulnura Issanova & Galymzhan Saparov, 2022. "Identifying Seasonal and Diurnal Variations and the Most Frequently Impacted Zone of Aerosols in the Aral Sea Region," IJERPH, MDPI, vol. 19(21), pages 1-21, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14144-:d:957283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Na Wu & Yongxiao Ge & Jilili Abuduwaili, 2021. "Grain Size Characteristics of Sediments Found in Typical Landscapes in the Playa of Ebinur Lake, Arid Central Asia," Land, MDPI, vol. 10(11), pages 1-15, October.
    2. Xu, Xibao & Jiang, Bo & Tan, Yan & Costanza, Robert & Yang, Guishan, 2018. "Lake-wetland ecosystem services modeling and valuation: Progress, gaps and future directions," Ecosystem Services, Elsevier, vol. 33(PA), pages 19-28.
    3. Reynaud, Arnaud & Lanzanova, Denis, 2017. "A Global Meta-Analysis of the Value of Ecosystem Services Provided by Lakes," Ecological Economics, Elsevier, vol. 137(C), pages 184-194.
    4. Eric Crighton & Lynn Barwin & Ian Small & Ross Upshur, 2011. "What have we learned? A review of the literature on children’s health and the environment in the Aral Sea area," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 56(2), pages 125-138, April.
    5. Viet-Ha Nhu & Ayub Mohammadi & Himan Shahabi & Ataollah Shirzadi & Nadhir Al-Ansari & Baharin Bin Ahmad & Wei Chen & Masood Khodadadi & Mehdi Ahmadi & Khabat Khosravi & Abolfazl Jaafari & Hoang Nguyen, 2020. "Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM + Images," IJERPH, MDPI, vol. 17(12), pages 1-18, June.
    6. Chandan Sarangi & Yun Qian & Karl Rittger & L. Ruby Leung & Duli Chand & Kat J. Bormann & Thomas H. Painter, 2020. "Dust dominates high-altitude snow darkening and melt over high-mountain Asia," Nature Climate Change, Nature, vol. 10(11), pages 1045-1051, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Wang & Xufeng Mao & Xiuhua Song & Wenjia Tang & Wenying Wang & Hongyan Yu & Yanfang Deng & Ziping Zhang & Zhijun Zhang & Huakun Zhou, 2022. "How Rising Water Levels Altered Ecosystem Provisioning Services of the Area around Qinghai Lake from 2000 to 2020: An InVEST-RF-GTWR Combined Method," Land, MDPI, vol. 11(9), pages 1-19, September.
    2. Uta Schirpke & Manuel Ebner & Hanna Pritsch & Veronika Fontana & Rainer Kurmayer, 2021. "Quantifying Ecosystem Services of High Mountain Lakes across Different Socio-Ecological Contexts," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    3. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Chucai Peng & Yang Xiang & Luxia Chen & Yangyang Zhang & Zhixiang Zhou, 2023. "The Impact of the Type and Abundance of Urban Blue Space on House Prices: A Case Study of Eight Megacities in China," Land, MDPI, vol. 12(4), pages 1-27, April.
    5. Exley, G. & Hernandez, R.R. & Page, T. & Chipps, M. & Gambro, S. & Hersey, M. & Lake, R. & Zoannou, K.-S. & Armstrong, A., 2021. "Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Marion Réveillet & Marie Dumont & Simon Gascoin & Matthieu Lafaysse & Pierre Nabat & Aurélien Ribes & Rafife Nheili & Francois Tuzet & Martin Ménégoz & Samuel Morin & Ghislain Picard & Paul Ginoux, 2022. "Black carbon and dust alter the response of mountain snow cover under climate change," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Wan Nie & Hongyan Guo & Lei Yang & Yaoyang Xu & Gang Li & Xiaohong Ruan & Yongguan Zhu & Liding Chen & Steven A. Banwart, 2020. "Economic Valuation of Earth’s Critical Zone: A Pilot Study of the Zhangxi Catchment, China," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    8. Manish Kumar & Milap Dashora & Rajesh Kumar & Swatantra Kumar Dubey & Pankaj Kumar Gupta & Alok Kumar, 2022. "Deciphering Depositional Environment of Playa Lakes Using Grain Size Parameters in the Arid and Semi-Arid Region of Rajasthan, India," Agriculture, MDPI, vol. 12(12), pages 1-16, November.
    9. Long Ho & Peter Goethals, 2020. "Research hotspots and current challenges of lakes and reservoirs: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 603-631, July.
    10. Baofeng Cai & Yang Zhang & Xianen Wang & Yu Li, 2018. "An Optimization Model for a Wetland Restoration Project under Uncertainty," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
    11. Stoeckl, Natalie & Dodd, Aaron & Kompas, Tom, 2023. "The monetary value of 16 services protected by the Australian National Biosecurity System: Spatially explicit estimates and vulnerability to incursions," Ecosystem Services, Elsevier, vol. 60(C).
    12. Xuexian Xu & Yuling Peng, 2023. "Ecological Compensation in Zhijiang City Based on Ecosystem Service Value and Ecological Risk," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    13. Pham, Hung Vuong & Sperotto, Anna & Torresan, Silvia & Acuña, Vicenç & Jorda-Capdevila, Dídac & Rianna, Guido & Marcomini, Antonio & Critto, Andrea, 2019. "Coupling scenarios of climate and land-use change with assessments of potential ecosystem services at the river basin scale," Ecosystem Services, Elsevier, vol. 40(C).
    14. Georgia Trakala & Achilleas Tsiroukis & Aristotelis Martinis, 2023. "Eco-Cultural Development of a Restored Lake Environment: The Case Study of Lake Karla (Thessaly, Greece)," Land, MDPI, vol. 12(6), pages 1-12, June.
    15. White Kristopher D., 2013. "A geographical perspective on the Aral Sea crisis: three interpretations of an image," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 21(21), pages 125-132, September.
    16. Ebner, Manuel & Fontana, Veronika & Schirpke, Uta & Tappeiner, Ulrike, 2022. "Stakeholder perspectives on ecosystem services of mountain lakes in the European Alps," Ecosystem Services, Elsevier, vol. 53(C).
    17. Stoeckl, Natalie & Condie, Scott & Anthony, Ken, 2021. "Assessing changes to ecosystem service values at large geographic scale: A case study for Australia’s Great Barrier Reef," Ecosystem Services, Elsevier, vol. 51(C).
    18. Yanhao Wu & Zijun Wu & Simin Jiang & Shuaishuai Lu & Nianqing Zhou, 2022. "Elemental Stoichiometry (C, N, P) of Soil in the Wetland Critical Zone of Dongting Lake, China: Understanding Soil C, N and P Status at Greater Depth," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    19. Gómez-Baggethun, Erik & Tudor, Marian & Doroftei, Mihai & Covaliov, Silviu & Năstase, Aurel & Onără, Dalia-Florentina & Mierlă, Marian & Marinov, Mihai & Doroșencu, Alexandru-Cătălin & Lupu, Gabriel &, 2019. "Changes in ecosystem services from wetland loss and restoration: An ecosystem assessment of the Danube Delta (1960–2010)," Ecosystem Services, Elsevier, vol. 39(C).
    20. Guangchao Li & Wei Chen & Xuepeng Zhang & Zhen Yang & Pengshuai Bi & Zhe Wang, 2022. "Ecosystem Service Values in the Dongting Lake Eco-Economic Zone and the Synergistic Impact of Its Driving Factors," IJERPH, MDPI, vol. 19(5), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14144-:d:957283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.