[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v122y2019icp287-308.html
   My bibliography  Save this article

A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties

Author

Listed:
  • Zheng, Liang
  • Xue, Xinfeng
  • Xu, Chengcheng
  • Ran, Bin
Abstract
The equity of right-of-way is an important topic in traffic management and control. With the balance consideration of traffic equity and efficiency, which are respectively evaluated by the Atkinson index and average travel time, this study proposes a bi-objective signal timing simulation-based optimization (SO) model under uncertainties, and solve it by a bi-objective stochastic simulation-based optimization (BOSSO) method. In this method, two types of surrogate models (i.e., regressing Kriging model and quadratic regression model) are used to capture the complicated mapping relationship between decision variables and bi-objectives, respectively in the whole variable domain and in the local trust-region. Meanwhile, the incorporation of the global regressing Kriging model and an adaptive selector helps to predict bi-objective values of untested samples and re-estimate simulated samples in the local trust-region, which can save great computational costs and smooth stochastic noises. Moreover, the non-interactive role of a decision maker is taken to generate more Pareto optimal solutions around his/her desired bi-objective values. Through the algorithm comparison for a benchmark bi-objective stochastic optimization problem, the proposed BOSSO method is validated to outperform three other counterparts (i.e., NSGA-II, BOTR and BOEGO) under the same simulation costs. In real-field experiments, an urban road network with 15 signalized and five non-signalized intersections in Changsha, China is modeled by VISSIM. After the well calibration of the microscopic traffic simulation model, the network-wide bi-objective signal timing stochastic SO problems with and without coordination are solved by BOSSO. Numerical results indicate that compared with the real-field case, the average travel time and Atkinson index are reduced respectively by at most 13.48% and 23.49% for optimized non-coordinated signal plans, and respectively by at most 25.58% and 2.83% for optimized coordinated ones. It is further validated that under variable traffic volumes, the non-coordinated signal plan can well improve both traffic efficiency and equity, and the coordinated one is capable to improve traffic efficiency at a larger degree but sacrifice traffic equity. Moreover, the balance analyses show the existence of competing relationship between bi-objectives, and BOSSO is confirmed to outperform NSGA-II, BOTR and BOEGO in searching the better Pareto optimal signal plans under the same budged simulations. In conclusion, BOSSO is promising to address bi-objective optimization problems characterized by costly evaluation, high dimensions and stochastic noises.

Suggested Citation

  • Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
  • Handle: RePEc:eee:transb:v:122:y:2019:i:c:p:287-308
    DOI: 10.1016/j.trb.2019.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151830403X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    2. Michael C. Fu, 2002. "Feature Article: Optimization for simulation: Theory vs. Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 192-215, August.
    3. Zhang, Lei & Levinson, David, 2004. "Optimal freeway ramp control without origin-destination information," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 869-887, December.
    4. Hachicha, Wafik & Ammeri, Ahmed & Masmoudi, Faouzi & Chachoub, Habib, 2010. "A comprehensive literature classification of simulation optimisation methods," MPRA Paper 27652, University Library of Munich, Germany.
    5. Zhang, H.M. & Shen, Wei, 2010. "Access control policies without inside queues: Their properties and public policy implications," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1132-1147, September.
    6. Carolina Osorio & Michel Bierlaire, 2013. "A Simulation-Based Optimization Framework for Urban Transportation Problems," Operations Research, INFORMS, vol. 61(6), pages 1333-1345, December.
    7. Rommel Regis & Christine Shoemaker, 2005. "Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions," Journal of Global Optimization, Springer, vol. 31(1), pages 153-171, January.
    8. Zhang, Chao & Osorio, Carolina & Flötteröd, Gunnar, 2017. "Efficient calibration techniques for large-scale traffic simulators," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 214-239.
    9. Cowell, Frank, 2011. "Measuring Inequality," OUP Catalogue, Oxford University Press, edition 3, number 9780199594047.
    10. Levinson, David & Zhang, Lei, 2006. "Ramp meters on trial: Evidence from the Twin Cities metering holiday," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 810-828, December.
    11. Kleijnen, J.P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2008. "Constrained Optimization in Simulation : A Novel Approach," Other publications TiSEM e49ba0fc-853c-4a13-b564-d, Tilburg University, School of Economics and Management.
    12. Kleijnen, Jack P.C. & Beers, Wim van & Nieuwenhuyse, Inneke van, 2010. "Constrained optimization in expensive simulation: Novel approach," European Journal of Operational Research, Elsevier, vol. 202(1), pages 164-174, April.
    13. Carolina Osorio & Kanchana Nanduri, 2015. "Energy-Efficient Urban Traffic Management: A Microscopic Simulation-Based Approach," Transportation Science, INFORMS, vol. 49(3), pages 637-651, August.
    14. Osorio, Carolina & Nanduri, Kanchana, 2015. "Urban transportation emissions mitigation: Coupling high-resolution vehicular emissions and traffic models for traffic signal optimization," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 520-538.
    15. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    16. Xiang He & Xiqun (Michael) Chen & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2017. "Optimal Time-Varying Pricing for Toll Roads Under Multiple Objectives: A Simulation-Based Optimization Approach," Transportation Science, INFORMS, vol. 51(2), pages 412-426, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    2. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    3. Zheng, Liang & Bao, Ji & Xu, Chengcheng & Tan, Zhen, 2022. "Biobjective robust simulation-based optimization for unconstrained problems," European Journal of Operational Research, Elsevier, vol. 299(1), pages 249-262.
    4. Xiaodong Song & Mingyang Li & Zhitao Li & Fang Liu, 2021. "Global Optimization Algorithm Based on Kriging Using Multi-Point Infill Sampling Criterion and Its Application in Transportation System," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    5. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Simulation-based robust optimization of limited-stop bus service with vehicle overtaking and dynamics: A response surface methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 61-81.
    6. Zheng, Liang & Yang, Youpeng & Xue, Xinfeng & Li, Xiaoru & Xu, Chengcheng, 2021. "Towards network-wide safe and efficient traffic signal timing optimization based on costly stochastic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    7. Huo, Jinbiao & Liu, Zhiyuan & Chen, Jingxu & Cheng, Qixiu & Meng, Qiang, 2023. "Bayesian optimization for congestion pricing problems: A general framework and its instability," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 1-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    2. Fu, Quanlu & Wu, Jiyan & Wu, Xuemian & Sun, Jian & Tian, Ye, 2024. "Managing network congestion with link-based incentives: A surrogate-based optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    3. Carolina Osorio & Linsen Chong, 2015. "A Computationally Efficient Simulation-Based Optimization Algorithm for Large-Scale Urban Transportation Problems," Transportation Science, INFORMS, vol. 49(3), pages 623-636, August.
    4. Zhou, Tianli & Fields, Evan & Osorio, Carolina, 2023. "A data-driven discrete simulation-based optimization algorithm for car-sharing service design," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    5. Mo, Baichuan & Koutsopoulos, Haris N. & Shen, Zuo-Jun Max & Zhao, Jinhua, 2023. "Robust path recommendations during public transit disruptions under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 82-107.
    6. Tay, Timothy & Osorio, Carolina, 2022. "Bayesian optimization techniques for high-dimensional simulation-based transportation problems," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 210-243.
    7. Osorio, Carolina & Punzo, Vincenzo, 2019. "Efficient calibration of microscopic car-following models for large-scale stochastic network simulators," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 156-173.
    8. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    9. Miranda, Rafael de Carvalho & Montevechi, José Arnaldo Barra & da Silva, Aneirson Francisco & Marins, Fernando Augusto Silva, 2017. "Increasing the efficiency in integer simulation optimization: Reducing the search space through data envelopment analysis and orthogonal arrays," European Journal of Operational Research, Elsevier, vol. 262(2), pages 673-681.
    10. Xiqun (Michael) Chen & Xiang He & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2019. "A Bayesian Stochastic Kriging Optimization Model Dealing with Heteroscedastic Simulation Noise for Freeway Traffic Management," Transportation Science, INFORMS, vol. 53(2), pages 545-565, March.
    11. Zhang, Chao & Osorio, Carolina & Flötteröd, Gunnar, 2017. "Efficient calibration techniques for large-scale traffic simulators," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 214-239.
    12. Zhongshun Shi & Siyang Gao & Hui Xiao & Weiwei Chen, 2019. "A worst‐case formulation for constrained ranking and selection with input uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 648-662, December.
    13. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    14. Xiang He & Xiqun (Michael) Chen & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2017. "Optimal Time-Varying Pricing for Toll Roads Under Multiple Objectives: A Simulation-Based Optimization Approach," Transportation Science, INFORMS, vol. 51(2), pages 412-426, May.
    15. M Laguna & J Molina & F Pérez & R Caballero & A G Hernández-Díaz, 2010. "The challenge of optimizing expensive black boxes: a scatter search/rough set theory approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 53-67, January.
    16. Fani Boukouvala & M. M. Faruque Hasan & Christodoulos A. Floudas, 2017. "Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption," Journal of Global Optimization, Springer, vol. 67(1), pages 3-42, January.
    17. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    18. Xiao Chen & Carolina Osorio & Bruno Filipe Santos, 2019. "Simulation-Based Travel Time Reliable Signal Control," Transportation Science, INFORMS, vol. 53(2), pages 523-544, March.
    19. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    20. Hendrik Thiel & Stephan L. Thomsen, 2015. "Individual Poverty Paths and the Stability of Control-Perception," SOEPpapers on Multidisciplinary Panel Data Research 794, DIW Berlin, The German Socio-Economic Panel (SOEP).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:122:y:2019:i:c:p:287-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.