[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i7p923-939.html
   My bibliography  Save this article

The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models

Author

Listed:
  • Bhat, Chandra R.
Abstract
The likelihood functions of multinomial probit (MNP)-based choice models entail the evaluation of analytically-intractable integrals. As a result, such models are usually estimated using maximum simulated likelihood (MSL) techniques. Unfortunately, for many practical situations, the computational cost to ensure good asymptotic MSL estimator properties can be prohibitive and practically infeasible as the number of dimensions of integration rises. In this paper, we introduce a maximum approximate composite marginal likelihood (MACML) estimation approach for MNP models that can be applied using simple optimization software for likelihood estimation. It also represents a conceptually and pedagogically simpler procedure relative to simulation techniques, and has the advantage of substantial computational time efficiency relative to the MSL approach. The paper provides a "blueprint" for the MACML estimation for a wide variety of MNP models.

Suggested Citation

  • Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:7:p:923-939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151100049X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Bartels & Denzil Fiebig & Arthur Soest, 2006. "Consumers and experts: an econometric analysis of the demand for water heaters," Empirical Economics, Springer, vol. 31(2), pages 369-391, June.
    2. Kurt J. Beron & James C. Murdoch & Wim P. M. Vijverberg, 2003. "Why Cooperate? Public Goods, Economic Power, and the Montreal Protocol," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 286-297, May.
    3. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    4. Kuk, Anthony Y. C. & Nott, David J., 2000. "A pairwise likelihood approach to analyzing correlated binary data," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 329-335, May.
    5. Li, Zheng & Hensher, David A. & Rose, John M., 2010. "Willingness to pay for travel time reliability in passenger transport: A review and some new empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 384-403, May.
    6. S. le Cessie & J. C. van Houwelingen, 1994. "Logistic Regression for Correlated Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 95-108, March.
    7. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    8. Caragea, Petruta C. & Smith, Richard L., 2007. "Asymptotic properties of computationally efficient alternative estimators for a class of multivariate normal models," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1417-1440, August.
    9. Heckman, James J. & Singer, Burton, 1986. "Econometric analysis of longitudinal data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 3, chapter 29, pages 1689-1763, Elsevier.
    10. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    11. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    12. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    13. Joe, Harry, 2008. "Accuracy of Laplace approximation for discrete response mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5066-5074, August.
    14. Pinkse, Joris & Slade, Margaret E., 1998. "Contracting in space: An application of spatial statistics to discrete-choice models," Journal of Econometrics, Elsevier, vol. 85(1), pages 125-154, July.
    15. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    16. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    17. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Uncovering the Distribution of Motorists' Preferences for Travel Time and Reliability," Econometrica, Econometric Society, vol. 73(4), pages 1367-1382, July.
    18. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    19. Bhat, Chandra R. & Castelar, Saul, 2002. "A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 593-616, August.
    20. Nils Lid Hjort & Cristiano Varin, 2008. "ML, PL, QL in Markov Chain Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(1), pages 64-82, March.
    21. Feddag, M.-L. & Bacci, S., 2009. "Pairwise likelihood for the longitudinal mixed Rasch model," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1027-1037, February.
    22. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    23. D. R. Cox, 2004. "A note on pseudolikelihood constructed from marginal densities," Biometrika, Biometrika Trust, vol. 91(3), pages 729-737, September.
    24. Cristiano Varin & Paolo Vidoni, 2009. "Pairwise Likelihood Inference for General State Space Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 170-185.
    25. Kanti V. Mardia & John T. Kent & Gareth Hughes & Charles C. Taylor, 2009. "Maximum likelihood estimation using composite likelihoods for closed exponential families," Biometrika, Biometrika Trust, vol. 96(4), pages 975-982.
    26. Bolduc, Denis & Fortin, Bernard & Fournier, Marc-Andre, 1996. "The Effect of Incentive Policies on the Practice Location of Doctors: A Multinomial Probit Analysis," Journal of Labor Economics, University of Chicago Press, vol. 14(4), pages 703-732, October.
    27. Ferdous, Nazneen & Eluru, Naveen & Bhat, Chandra R. & Meloni, Italo, 2010. "A multivariate ordered-response model system for adults' weekday activity episode generation by activity purpose and social context," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 922-943, September.
    28. Chandra Bhat & Ipek Sener, 2009. "A copula-based closed-form binary logit choice model for accommodating spatial correlation across observational units," Journal of Geographical Systems, Springer, vol. 11(3), pages 243-272, September.
    29. Peter Craig, 2008. "A new reconstruction of multivariate normal orthant probabilities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 227-243, February.
    30. Kurt J. Beron & Wim P. M. Vijverberg, 2004. "Probit in a Spatial Context: A Monte Carlo Analysis," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 8, pages 169-195, Springer.
    31. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    32. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    33. Jacques Huguenin & Florian Pelgrin & Alberto Holly, 2009. "Estimation of multivariate probit models by exact maximum likelihood," Working Papers 0902, University of Lausanne, Institute of Health Economics and Management (IEMS).
    34. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    35. Daniel P. McMillen, 1995. "Spatial Effects in Probit Models: A Monte Carlo Investigation," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax (ed.), New Directions in Spatial Econometrics, chapter 9, pages 189-228, Springer.
    36. Varin, Cristiano & Vidoni, Paolo, 2006. "Pairwise likelihood inference for ordinal categorical time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2365-2373, December.
    37. Mark M. Fleming, 2004. "Techniques for Estimating Spatially Dependent Discrete Choice Models," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 7, pages 145-168, Springer.
    38. Hess, Stephane & Rose, John M., 2009. "Allowing for intra-respondent variations in coefficients estimated on repeated choice data," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 708-719, July.
    39. Sener, Ipek N. & Pendyala, Ram M. & Bhat, Chandra R., 2011. "Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior," Journal of Transport Geography, Elsevier, vol. 19(2), pages 294-303.
    40. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    41. Renard, Didier & Molenberghs, Geert & Geys, Helena, 2004. "A pairwise likelihood approach to estimation in multilevel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 649-667, January.
    42. Mariano,Roberto & Schuermann,Til & Weeks,Melvyn J. (ed.), 2000. "Simulation-based Inference in Econometrics," Cambridge Books, Cambridge University Press, number 9780521591126, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paleti, Rajesh & Bhat, Chandra R., 2013. "The composite marginal likelihood (CML) estimation of panel ordered-response models," Journal of choice modelling, Elsevier, vol. 7(C), pages 24-43.
    2. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    3. Büscher, Sebastian & Bauer, Dietmar, 2024. "Weighting strategies for pairwise composite marginal likelihood estimation in case of unbalanced panels and unaccounted autoregressive structure of the errors," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    4. Ipek Sener & Chandra Bhat, 2012. "Flexible spatial dependence structures for unordered multinomial choice models: formulation and application to teenagers’ activity participation," Transportation, Springer, vol. 39(3), pages 657-683, May.
    5. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    6. Chandra Bhat & Ipek Sener, 2009. "A copula-based closed-form binary logit choice model for accommodating spatial correlation across observational units," Journal of Geographical Systems, Springer, vol. 11(3), pages 243-272, September.
    7. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    8. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    9. Hess, Stephane & Train, Kenneth E., 2011. "Recovery of inter- and intra-personal heterogeneity using mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 973-990, August.
    10. Bhat, Chandra R. & Astroza, Sebastian & Hamdi, Amin S., 2017. "A spatial generalized ordered-response model with skew normal kernel error terms with an application to bicycling frequency," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 126-148.
    11. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    12. Nobel, Anne & Lizin, Sebastien & Malina, Robert, 2023. "What drives the designation of protected areas? Accounting for spatial dependence using a composite marginal likelihood approach," Ecological Economics, Elsevier, vol. 205(C).
    13. Chandra Bhat, 2015. "A new spatial (social) interaction discrete choice model accommodating for unobserved effects due to endogenous network formation," Transportation, Springer, vol. 42(5), pages 879-914, September.
    14. Bhat, Chandra R. & Sidharthan, Raghuprasad, 2011. "A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 940-953, August.
    15. Nazneen Ferdous & Chandra Bhat, 2013. "A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns," Journal of Geographical Systems, Springer, vol. 15(1), pages 1-29, January.
    16. M.-L. Feddag, 2016. "Pairwise likelihood estimation for the normal ogive model with binary data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(2), pages 223-237, April.
    17. Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020. "The order of variables, simulation noise, and accuracy of mixed logit estimates," Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.
    18. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    19. Heijnen, P. & Samarina, A.. & Jacobs, J.P.A.M. & Elhorst, J.P., 2013. "State transfers at different moments in time," Research Report 13006-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    20. Myrsini Katsikatsou & Irini Moustaki, 2016. "Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1046-1068, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:7:p:923-939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.