[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v146y2021ics1364032121004305.html
   My bibliography  Save this article

The consumption patterns and determining factors of rural household energy: A case study of Henan Province in China

Author

Listed:
  • Zi, Cao
  • Qian, Meng
  • Baozhong, Gao
Abstract
This study considers the largest rural province in China, Henan Province, as an example to analyse government policies aimed at ensuring household energy supply and promoting the clean transformation of the rural energy structure. In addition, rural household energy consumption modes and the probability that families will purchase energy-consuming products are investigated. The factors that influence household energy consumption decisions and the energy ladder are examined with a logistic regression. The results show that “gas + electricity” has become the prevailing combined cooking energy pattern in the investigated rural area and that 33% of households use this type of cooking energy. Agricultural income has an obvious positive impact on the rural cooking energy ladder; moreover, increasing households’ agricultural income is important for promoting cleaner cooking energy consumption, as the total income level determines whether energy-consuming products are purchased. The process of urbanization could accelerate the upgrading of rural energy consumption because households with more members who work in or near cities have a greater motivation to use modern cooking energy sources. As economic development and income increase, it is important to implement energy transition policies to improve the supply and consumption of clean energy in rural areas.

Suggested Citation

  • Zi, Cao & Qian, Meng & Baozhong, Gao, 2021. "The consumption patterns and determining factors of rural household energy: A case study of Henan Province in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004305
    DOI: 10.1016/j.rser.2021.111142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121004305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niu, Wenjuan & Han, Lujia & Liu, Xian & Huang, Guangqun & Chen, Longjian & Xiao, Weihua & Yang, Zengling, 2016. "Twenty-two compositional characterizations and theoretical energy potentials of extensively diversified China's crop residues," Energy, Elsevier, vol. 100(C), pages 238-250.
    2. Hosier, Richard H. & Dowd, Jeffrey, 1987. "Household fuel choice in Zimbabwe : An empirical test of the energy ladder hypothesis," Resources and Energy, Elsevier, vol. 9(4), pages 347-361, December.
    3. Barron, Manuel & Torero, Maximo, 2017. "Household electrification and indoor air pollution," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 81-92.
    4. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    5. Heltberg, Rasmus, 2001. "Determinants and impact of local institutions for common resource management," Environment and Development Economics, Cambridge University Press, vol. 6(2), pages 183-208, May.
    6. Khandker, Shahidur R. & Barnes, Douglas F. & Samad, Hussain A., 2010. "Energy poverty in rural and urban India : are the energy poor also income poor ?," Policy Research Working Paper Series 5463, The World Bank.
    7. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    8. Troncoso, Karin & Segurado, Patricia & Aguilar, Margarita & Soares da Silva, Agnes, 2019. "Adoption of LPG for cooking in two rural communities of Chiapas, Mexico," Energy Policy, Elsevier, vol. 133(C).
    9. Gaur, Varun, 2018. "Determinants of household’s modern cooking and lighting energy transition in rural India – Exploring household’s activities and its interactions with other households," Discussion Papers 271347, University of Bonn, Center for Development Research (ZEF).
    10. Sehjpal, Ritika & Ramji, Aditya & Soni, Anmol & Kumar, Atul, 2014. "Going beyond incomes: Dimensions of cooking energy transitions in rural India," Energy, Elsevier, vol. 68(C), pages 470-477.
    11. Bensch, Gunther & Peters, Jörg, 2015. "The intensive margin of technology adoption – Experimental evidence on improved cooking stoves in rural Senegal," Journal of Health Economics, Elsevier, vol. 42(C), pages 44-63.
    12. Gurung, Anup & Kumar Ghimeray, Amal & Hassan, Sedky H.A., 2012. "The prospects of renewable energy technologies for rural electrification: A review from Nepal," Energy Policy, Elsevier, vol. 40(C), pages 374-380.
    13. Fan, Jie & Liang, Yu-tian & Tao, An-jun & Sheng, Ke-rong & Ma, Hai-Long & Xu, Yong & Wang, Chuan-Sheng & Sun, Wei, 2011. "Energy policies for sustainable livelihoods and sustainable development of poor areas in China," Energy Policy, Elsevier, vol. 39(3), pages 1200-1212, March.
    14. Ardehali, M.M., 2006. "Rural energy development in Iran: Non-renewable and renewable resources," Renewable Energy, Elsevier, vol. 31(5), pages 655-662.
    15. Adusah-Poku, Frank & Takeuchi, Kenji, 2019. "Household energy expenditure in Ghana: A double-hurdle model approach," World Development, Elsevier, vol. 117(C), pages 266-277.
    16. Xueyan Zhao & Haili Zhao & Lu Jiang & Chenyu Lu & Bing Xue, 2018. "The Influence of Farmers’ Livelihood Strategies on Household Energy Consumption in the Eastern Qinghai–Tibet Plateau, China," Sustainability, MDPI, vol. 10(6), pages 1-12, May.
    17. Farsi, Mehdi & Filippini, Massimo & Pachauri, Shonali, 2007. "Fuel choices in urban Indian households," Environment and Development Economics, Cambridge University Press, vol. 12(6), pages 757-774, December.
    18. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2017. "Factors determining household use of clean and renewable energy sources for lighting in Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 661-672.
    19. Narasimha Rao, M. & Reddy, B. Sudhakara, 2007. "Variations in energy use by Indian households: An analysis of micro level data," Energy, Elsevier, vol. 32(2), pages 143-153.
    20. Asrari, Arash & Ghasemi, Abolfazl & Javidi, Mohammad Hossein, 2012. "Economic evaluation of hybrid renewable energy systems for rural electrification in Iran—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3123-3130.
    21. Bhattacharyya, Ranajoy & Ganguly, Amrita, 2017. "Cross subsidy removal in electricity pricing in India," Energy Policy, Elsevier, vol. 100(C), pages 181-190.
    22. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    23. Niu, Shuwen & Zhang, Xin & Zhao, Chunsheng & Niu, Yunzhu, 2012. "Variations in energy consumption and survival status between rural and urban households: A case study of the Western Loess Plateau, China," Energy Policy, Elsevier, vol. 49(C), pages 515-527.
    24. Zhang, Ming & Song, Yan & Li, Peng & Li, Huanan, 2016. "Study on affecting factors of residential energy consumption in urban and rural Jiangsu," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 330-337.
    25. Wang, Xiaohua & Feng, Zhengmin & Gao, xingfeng & Jiang, Kui, 1999. "On household energy consumption for rural development: a study on Yangzhong county of China," Energy, Elsevier, vol. 24(6), pages 493-500.
    26. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2017. "Development of an optimal biogas system design model for Sub-Saharan Africa with case studies from Kenya and Cameroon," Renewable Energy, Elsevier, vol. 109(C), pages 586-601.
    27. Jianmei Zhao, 2015. "Did China’s Rural Appliance Rebate program boost home appliance consumption during the latest recession?," Journal of Economic Policy Reform, Taylor and Francis Journals, vol. 18(4), pages 309-325, October.
    28. Rui Hao, 2008. "Opening up, Market Reforms, and Convergence Clubs in China," Post-Print hal-00284982, HAL.
    29. Limmeechokchai, Bundit & Chawana, Saichit, 2007. "Sustainable energy development strategies in the rural Thailand: The case of the improved cooking stove and the small biogas digester," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 818-837, June.
    30. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    31. Gould, Carlos F. & Urpelainen, Johannes, 2018. "LPG as a clean cooking fuel: Adoption, use, and impact in rural India," Energy Policy, Elsevier, vol. 122(C), pages 395-408.
    32. Rui Hao, 2008. "Opening up, Market Reform, and Convergence Clubs in China," Asian Economic Journal, East Asian Economic Association, vol. 22(2), pages 133-160, June.
    33. Balachandra, P., 2011. "Dynamics of rural energy access in India: An assessment," Energy, Elsevier, vol. 36(9), pages 5556-5567.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
    2. Li, Jianglong & Gao, Jinfeng & Liu, Hongxun, 2024. "Reducing energy poverty by nearly universal pension coverage of rural China," World Development, Elsevier, vol. 176(C).
    3. Chen, Si-Yuan & Xue, Meng-Tian & Wang, Zhao-Hua & Tian, Xin & Zhang, Bin, 2022. "Exploring pathways of phasing out clean heating subsidies for rural residential buildings in China," Energy Economics, Elsevier, vol. 116(C).
    4. Rahut, Dil Bahadur & Aryal, Jeetendra Prakash & Manchanda, Navneet & Sonobe, Tetsushi, 2024. "Examining energy justice: Empirical analysis of clean cooking transition across social groups in India, 2004–2018," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    5. Guo, Ji & Xu, Yuanjing & Qu, Yao & Wang, Yiting & Wu, Xianhua, 2023. "Exploring factors affecting household energy consumption in the internet era: Empirical evidence from Chinese households," Energy Policy, Elsevier, vol. 183(C).
    6. Zhang, Lihui & Li, Songrui & Hu, Yitang & Nie, Qingyun, 2022. "Economic optimization of a bioenergy-based hybrid renewable energy system under carbon policies—from the life-cycle perspective," Applied Energy, Elsevier, vol. 310(C).
    7. Omokanmi, Olatunde Julius & Ibrahim, Ridwan Lanre & Ajide, Kazeem Bello & Al-Faryan, Mamdouh Abdulaziz Saleh, 2022. "Exploring the dynamic impacts of natural resources and environmental pollution on longevity in resource-dependent African countries: Does income level matter?," Resources Policy, Elsevier, vol. 79(C).
    8. Pang, Qinghua & Dong, Xianwei & Zhang, Lina & Chiu, Yung-ho, 2023. "Drivers and key pathways of the household energy consumption in the Yangtze river economic belt," Energy, Elsevier, vol. 262(PA).
    9. Teng Ma & Silu Zhang & Yilong Xiao & Xiaorui Liu & Minghao Wang & Kai Wu & Guofeng Shen & Chen Huang & Yan Ru Fang & Yang Xie, 2023. "Costs and health benefits of the rural energy transition to carbon neutrality in China," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Zhu, Mengshu & Fang, Jiakun & Ai, Xiaomeng & Cui, Shichang & Feng, Yuang & Li, Peng & Zhang, Yihan & Zheng, Yongle & Chen, Zhe & Wen, Jinyu, 2023. "A comprehensive methodology for optimal planning of remote integrated energy systems," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Ridhima & Pelli, Martino, 2021. "Electrification and cooking fuel choice in rural India," World Development, Elsevier, vol. 146(C).
    2. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    3. Kuo, Ying-Min & Azam, Mehtabul, 2019. "Household Cooking Fuel Choice in India, 2004-2012: A Panel Multinomial Analysis," IZA Discussion Papers 12682, Institute of Labor Economics (IZA).
    4. Wassie, Yibeltal T. & Rannestad, Meley M. & Adaramola, Muyiwa S., 2021. "Determinants of household energy choices in rural sub-Saharan Africa: An example from southern Ethiopia," Energy, Elsevier, vol. 221(C).
    5. Aziz, Shakila & Chowdhury, Shahriar Ahmed, 2021. "Determinants of off-grid electrification choice and expenditure: Evidence from Bangladesh," Energy, Elsevier, vol. 219(C).
    6. Klege, Rebecca A. & Amuakwa-Mensah, Franklin & Visser, Martine, 2022. "Tenancy and energy choices in Rwanda. A replication and extension study," World Development Perspectives, Elsevier, vol. 26(C).
    7. Andadari, Roos Kities & Mulder, Peter & Rietveld, Piet, 2014. "Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia," Energy Policy, Elsevier, vol. 66(C), pages 436-449.
    8. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    9. Harrington, Elise & Athavankar, Ameya & Hsu, David, 2020. "Variation in rural household energy transitions for basic lighting in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Cheng, Chao-yo & Urpelainen, Johannes, 2014. "Fuel stacking in India: Changes in the cooking and lighting mix, 1987–2010," Energy, Elsevier, vol. 76(C), pages 306-317.
    11. Kojo Sarfo Gyamfi & Elena Gaura & James Brusey & Alessandro Bezerra Trindade & Nandor Verba, 2020. "Understanding Household Fuel Choice Behaviour in the Amazonas State, Brazil: Effects of Validation and Feature Selection," Energies, MDPI, vol. 13(15), pages 1-21, July.
    12. Liu, Pihui & Han, Chuanfeng & Liu, Xinghua & Teng, Minmin, 2023. "Assessing the effect of nonfarm income on the household cooking energy transition in rural China," Energy, Elsevier, vol. 267(C).
    13. Ujjayant Chakravorty & Ridhima Gupta & Martino Pelli, 2022. "The economics of rural energy use in developing countries," CIRANO Working Papers 2022s-12, CIRANO.
    14. Li, Jianglong & Gao, Jinfeng & Liu, Hongxun, 2024. "Reducing energy poverty by nearly universal pension coverage of rural China," World Development, Elsevier, vol. 176(C).
    15. Rahul Ranjan & Sudershan Singh, 2023. "Switching Towards LPG: Indian Household Perspectives," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(2), pages 417-435, June.
    16. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    17. Nawaz, Saima & Iqbal, Nasir, 2020. "The impact of unconditional cash transfer on fuel choices among ultra-poor in Pakistan: Quasi-experimental evidence from the Benazir Income Support Program," Energy Policy, Elsevier, vol. 142(C).
    18. Koirala, Dhiroj Prasad & Acharya, Bikram, 2022. "Households’ fuel choices in the context of a decade-long load-shedding problem in Nepal," Energy Policy, Elsevier, vol. 162(C).
    19. Utkarsh Patel & Deepak Kumar, 2020. "The Indian Energy Divide: Dissecting inequalities in the energy transition towards LPG," Indian Council for Research on International Economic Relations (ICRIER) Working Paper 401, Indian Council for Research on International Economic Relations (ICRIER), New Delhi, India.
    20. Chen, Feifei & Qiu, Huanguang & Zhang, Jun, 2022. "Energy consumption and income of the poor in rural China: Inference for poverty measures," Energy Policy, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.