[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v94y2018icp430-439.html
   My bibliography  Save this article

Looking towards policies supporting biofuels and technological change: Evidence from France

Author

Listed:
  • Doumax-Tagliavini, Virginie
  • Sarasa, Cristina
Abstract
The increasing constraints on crude oil resources contribute to the emergence of liquid biofuels as an alternative for road transport fuels. The European Union (EU) Parliament called for a 7% limit on crop-based biofuels by 2030 and proposed increasing the incorporation target for advanced biofuels, within the proposals under discussion in relation to the post-2020 EU Renewable Energy Directive (RED II) by 2021–2030. The main objective of this work is to assess the economic impacts of the EU Parliament's decision concerning first generation biofuels. We also determine the conditions under which advanced biofuels could become available by examining the evolution of oil prices and public subsidies. We employ a recursive dynamic computable general equilibrium (CGE) model calibrated on the French economy. Advanced biofuels are modelled as latent technology and we include biofuel by-products. Our simulations provide guidelines for public decision-makers to design alternative fiscal policies to support biofuels in a context of regulatory uncertainty.

Suggested Citation

  • Doumax-Tagliavini, Virginie & Sarasa, Cristina, 2018. "Looking towards policies supporting biofuels and technological change: Evidence from France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 430-439.
  • Handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:430-439
    DOI: 10.1016/j.rser.2018.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118304568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fiorese, Giulia & Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina, 2013. "Advanced biofuels: Future perspectives from an expert elicitation survey," Energy Policy, Elsevier, vol. 56(C), pages 293-311.
    2. Yang, Jun & Huang, Jikun & Qiu, Huanguang & Rozelle, Scott & Sombilla, Mercy A., 2009. "Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade," Applied Energy, Elsevier, vol. 86(Supplemen), pages 37-46, November.
    3. Rutherford, Thomas F, 1999. "Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax," Computational Economics, Springer;Society for Computational Economics, vol. 14(1-2), pages 1-46, October.
    4. Gurgel Angelo & Reilly John M & Paltsev Sergey, 2007. "Potential Land Use Implications of a Global Biofuels Industry," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 5(2), pages 1-36, December.
    5. Kretschmer, Bettina & Narita, Daiju & Peterson, Sonja, 2009. "The economic effects of the EU biofuel target," Open Access Publications from Kiel Institute for the World Economy 32984, Kiel Institute for the World Economy (IfW Kiel).
    6. Duarte, Rosa & Sánchez-Chóliz, Julio & Sarasa, Cristina, 2018. "Consumer-side actions in a low-carbon economy: A dynamic CGE analysis for Spain," Energy Policy, Elsevier, vol. 118(C), pages 199-210.
    7. Martin Banse & Hans van Meijl & Andrzej Tabeau & Geert Woltjer, 2008. "Will EU biofuel policies affect global agricultural markets?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 35(2), pages 117-141, June.
    8. Arkadiusz Kijek & Tomasz Kijek, 2010. "Modelling of innovation diffusion," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 20(3-4), pages 53-68.
    9. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    10. Birur, Dileep & Hertel, Thomas & Tyner, Wally, 2008. "Impact of Biofuel Production on World Agricultural Markets: A Computable General Equilibrium Analysis," GTAP Working Papers 2413, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    11. Taheripour, Farzad & Wally Tyner, 2011. "Introducing First and Second Generation Biofuels into GTAP Data Base version 7," GTAP Research Memoranda 3477, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    12. Arndt, Channing & Pauw, Karl & Thurlow, James, 2012. "Biofuels and economic development: A computable general equilibrium analysis for Tanzania," Energy Economics, Elsevier, vol. 34(6), pages 1922-1930.
    13. Doumax, Virginie & Philip, Jean-Marc & Sarasa, Cristina, 2014. "Biofuels, tax policies and oil prices in France: Insights from a dynamic CGE model," Energy Policy, Elsevier, vol. 66(C), pages 603-614.
    14. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    15. Saladini, Fabrizio & Patrizi, Nicoletta & Pulselli, Federico M. & Marchettini, Nadia & Bastianoni, Simone, 2016. "Guidelines for emergy evaluation of first, second and third generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 221-227.
    16. Cansino, JM & Cardenete, MA & González-Limón, JM & Román, R, 2013. "Economic impacts of biofuels deployment in Andalusia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 274-282.
    17. Timilsina, Govinda R. & Mevel, Simon & Shrestha, Ashish, 2011. "Oil price, biofuels and food supply," Energy Policy, Elsevier, vol. 39(12), pages 8098-8105.
    18. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    19. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Mark W. Rosegrant & Tingju Zhu & Siwa Msangi & Timothy Sulser, 2008. "Global Scenarios for Biofuels: Impacts and Implications ," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 30(3), pages 495-505.
    21. Wianwiwat, Suthin & Asafu-Adjaye, John, 2013. "Is there a role for biofuels in promoting energy self sufficiency and security? A CGE analysis of biofuel policy in Thailand," Energy Policy, Elsevier, vol. 55(C), pages 543-555.
    22. Su, Yujie & Zhang, Peidong & Su, Yuqing, 2015. "An overview of biofuels policies and industrialization in the major biofuel producing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 991-1003.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrice Bougette & Christophe Charlier, 2019. "Subsidies and Countervailing Measures in the EU Biofuel Industry: A Welfare Analysis," Post-Print halshs-02306022, HAL.
    2. Charisiou, N.D. & Italiano, C. & Pino, L. & Sebastian, V. & Vita, A. & Goula, M.A., 2020. "Hydrogen production via steam reforming of glycerol over Rh/γ-Al2O3 catalysts modified with CeO2, MgO or La2O3," Renewable Energy, Elsevier, vol. 162(C), pages 908-925.
    3. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Technologies, Methods, and Economic Analysis for Sustainable Development of Energy, Water, and Environment Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    4. Chiaramonti, David & Goumas, Theodor, 2019. "Impacts on industrial-scale market deployment of advanced biofuels and recycled carbon fuels from the EU Renewable Energy Directive II," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Francesca Di Gruttola & Domenico Borello, 2021. "Analysis of the EU Secondary Biomass Availability and Conversion Processes to Produce Advanced Biofuels: Use of Existing Databases for Assessing a Metric Evaluation for the 2025 Perspective," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    6. F, Feijoo & A, Pfeifer & L, Herc & D, Groppi & N, Duić, 2022. "A long-term capacity investment and operational energy planning model with power-to-X and flexibility technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doumax, Virginie & Philip, Jean-Marc & Sarasa, Cristina, 2014. "Biofuels, tax policies and oil prices in France: Insights from a dynamic CGE model," Energy Policy, Elsevier, vol. 66(C), pages 603-614.
    2. Virginie Doumax-Tagliavini & Cristina Sarasa, University of Zaragoza, 2014. "Biofuels, technological change and uncertainty: Evidence from France," EcoMod2014 6941, EcoMod.
    3. Virginie Doumax & Jean-Marc Philip & Cristina Sarasa, 2013. "Biofuels, tax policies and oil price: insights from a dynamic CGE model," EcoMod2013 5417, EcoMod.
    4. Huang, Jikun & Yang, Jun & Msangi, Siwa & Rozelle, Scott & Weersink, Alfons, 2012. "Global biofuel production and poverty in China," Applied Energy, Elsevier, vol. 98(C), pages 246-255.
    5. Grant J. Allan, 2015. "The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 615-643, April.
    6. Elizondo, Alejandra & Boyd, Roy, 2017. "Economic impact of ethanol promotion in Mexico: A general equilibrium analysis," Energy Policy, Elsevier, vol. 101(C), pages 293-301.
    7. Huang, Jikun & Yang, Jun & Msangi, Siwa & Rozelle, Scott & Weersink, Alfons, 2012. "Biofuels and the poor: Global impact pathways of biofuels on agricultural markets," Food Policy, Elsevier, vol. 37(4), pages 439-451.
    8. Vitezslav Pisa & Jan Bruha & Vitezslav Pisa, 2011. "Dynamics of the Commodity Prices and Quantities: An Analysis using a Dynamic Multiregional CGE Model," EcoMod2011 2889, EcoMod.
    9. María Blanco & Marcel Adenäuer & Shailesh Shrestha & Arno Becker, 2012. "Methodology to assess EU Biofuel Policies: The CAPRI Approach," JRC Research Reports JRC80037, Joint Research Centre.
    10. U. Martin Persson, 2015. "The impact of biofuel demand on agricultural commodity prices: a systematic review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 410-428, September.
    11. Kolasa, Marcin, 2014. "Real convergence and its illusions," Economic Modelling, Elsevier, vol. 37(C), pages 79-88.
    12. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    13. Wianwiwat, Suthin & Asafu-Adjaye, John, 2013. "Is there a role for biofuels in promoting energy self sufficiency and security? A CGE analysis of biofuel policy in Thailand," Energy Policy, Elsevier, vol. 55(C), pages 543-555.
    14. Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
    15. Julien Lefevre, 2018. "Modeling the Socioeconomic Impacts of the Adoption of a Carbon Pricing Instrument – Literature review," CIRED Working Papers hal-03128619, HAL.
    16. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    17. Qu, Yang & Swales, J. Kim & Hooper, Tara & Austen, Melanie C. & Wang, Xinhao & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Economic trade-offs in marine resource use between offshore wind farms and fisheries in Scottish waters," Energy Economics, Elsevier, vol. 125(C).
    18. JESPER JENSEN & Thomas F. Rutherford & David G. Tarr, 2014. "Modeling Services Liberalization: The Case of Tanzania," World Scientific Book Chapters, in: APPLIED TRADE POLICY MODELING IN 16 COUNTRIES Insights and Impacts from World Bank CGE Based Projects, chapter 9, pages 191-222, World Scientific Publishing Co. Pte. Ltd..
    19. Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 645-663, September.
      • Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Post-Print halshs-01117673, HAL.
      • Chakravorty, Ujjayant & Hubert, Marie-Helene & Nostbakken, Linda, 2009. "Fuel versus Food," Working Papers 2009-20, University of Alberta, Department of Economics.
    20. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2015. "Impacts of ethanol policy on corn prices: A review and meta-analysis of recent evidence," Food Policy, Elsevier, vol. 51(C), pages 63-73.

    More about this item

    Keywords

    CGE model; First generation biofuels; Second generation biofuels; Tax policy;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:430-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.