[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v186y2019icp120-133.html
   My bibliography  Save this article

Storage availability of one-shot system under periodic inspection considering inspection error

Author

Listed:
  • Zhao, Qian Qian
  • Yun, Won Young
Abstract
This paper presents a model to find the optimal inspection intervals for one-shot system with n components under periodic inspection. We assume that the failure times of all components in a series structure are independent and follow an exponential distribution. In this model, the inspection is imperfect, and there can be undiscovered failures. The undiscovered failures can be detected at the following inspection time points. The interval availability and life cycle cost are considered as optimization criteria are derived analytically. A simulation algorithm procedure is also developed with Monte Carlo simulation to obtain the optimal inspection intervals. In illustration examples, we first calculate the system availability under periodic inspection through the analytical model and investigate the effect of inspection error on the storage availability. We then study the impacts of inspection and cost parameters on the optimal inspection intervals through a sensitivity analysis.

Suggested Citation

  • Zhao, Qian Qian & Yun, Won Young, 2019. "Storage availability of one-shot system under periodic inspection considering inspection error," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 120-133.
  • Handle: RePEc:eee:reensy:v:186:y:2019:i:c:p:120-133
    DOI: 10.1016/j.ress.2019.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201831024X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
    2. Flage, Roger, 2014. "A delay time model with imperfect and failure-inducing inspections," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 1-12.
    3. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V. & Dwight, R.A., 2013. "Imperfect inspection and replacement of a system with a defective state: A cost and reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 80-87.
    4. Nakagawa, T. & Mizutani, S., 2009. "A summary of maintenance policies for a finite interval," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 89-96.
    5. Cheng, Yao & Elsayed, Elsayed A., 2018. "Reliability modeling and optimization of operational use of one-shot units," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 27-36.
    6. Newby, Martin, 2008. "Monitoring and maintenance of spares and one shot devices," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 588-594.
    7. Al Hanbali, Ahmad & van der Heijden, Matthieu, 2013. "Interval availability analysis of a two-echelon, multi-item system," European Journal of Operational Research, Elsevier, vol. 228(3), pages 494-503.
    8. Qiu, Qingan & Cui, Lirong & Gao, Hongda & Yi, He, 2018. "Optimal allocation of units in sequential probability series systems," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 351-363.
    9. Zhao, Qian Qian & Yun, Won Young, 2018. "Determining the inspection intervals for one-shot systems with support equipment," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 63-75.
    10. Nakagawa, T. & Mizutani, S. & Chen, M., 2010. "A summary of periodic and random inspection policies," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 906-911.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Zhang, Fengxia & Shen, Jingyuan & Ma, Yizhong, 2020. "Optimal maintenance policy considering imperfect repairs and non-constant probabilities of inspection errors," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Zhu, Xiaojun & Balakrishnan, N., 2022. "One-shot device test data analysis using non-parametric and semi-parametric inferential methods and applications," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Li & Ma, Xiaobing & Zhai, Qingqing & Zhao, Yu, 2016. "A delay time model for a mission-based system subject to periodic and random inspection and postponed replacement," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 96-104.
    2. Yang, Li & Ma, Xiaobing & Peng, Rui & Zhai, Qingqing & Zhao, Yu, 2017. "A preventive maintenance policy based on dependent two-stage deterioration and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 201-211.
    3. Wang, Jinhe & Zhang, Xiaohong & Zeng, Jianchao & Zhang, Yunzheng, 2020. "Joint external and internal opportunistic optimisation for wind turbine considering wind velocity," Renewable Energy, Elsevier, vol. 159(C), pages 380-398.
    4. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    5. Wu, Shuo-Jye & Hsu, Chu-Chun & Huang, Syuan-Rong, 2020. "Optimal designs and reliability sampling plans for one-shot devices with cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    6. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    7. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    8. Alberti, Alexandre R. & Cavalcante, Cristiano A.V. & Scarf, Philip & Silva, André L.O., 2018. "Modelling inspection and replacement quality for a protection system," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 145-153.
    9. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    10. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    11. Qiu, Qingan & Cui, Lirong, 2019. "Gamma process based optimal mission abort policy," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    12. Akcay, Alp, 2022. "An alert-assisted inspection policy for a production process with imperfect condition signals," European Journal of Operational Research, Elsevier, vol. 298(2), pages 510-525.
    13. Zhang, Yongjin & Zhao, Ming & Zhang, Shitao & Wang, Jiamei & Zhang, Yanjun, 2017. "An integrated approach to estimate storage reliability with initial failures based on E-Bayesian estimates," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 24-36.
    14. Yaguang Wu & Qingan Qiu, 2022. "Optimal Triggering Policy of Protective Devices Considering Self-Exciting Mechanism of Shocks," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
    15. Qingan Qiu & Lirong Cui & Dejing Kong, 2019. "Availability and maintenance modeling for a two-component system with dependent failures over a finite time horizon," Journal of Risk and Reliability, , vol. 233(2), pages 200-210, April.
    16. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V., 2017. "A study of postponed replacement in a delay time model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 70-79.
    17. Li Yang & Yu Zhao & Xiaobing Ma & Qingan Qiu, 2018. "An optimal inspection and replacement policy for a two-unit system," Journal of Risk and Reliability, , vol. 232(6), pages 766-776, December.
    18. Sou-Sen Leu & Tao-Ming Ying, 2020. "Replacement and Maintenance Decision Analysis for Hydraulic Machinery Facilities at Reservoirs under Imperfect Maintenance," Energies, MDPI, vol. 13(10), pages 1-10, May.
    19. Zhao, Qian Qian & Yun, Won Young, 2018. "Determining the inspection intervals for one-shot systems with support equipment," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 63-75.
    20. Qiu, Qingan & Cui, Lirong, 2019. "Optimal mission abort policy for systems subject to random shocks based on virtual age process," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 11-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:186:y:2019:i:c:p:120-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.