[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v124y2017icp50-61.html
   My bibliography  Save this article

Tracing global lithium flow: A trade-linked material flow analysis

Author

Listed:
  • Sun, Xin
  • Hao, Han
  • Zhao, Fuquan
  • Liu, Zongwei
Abstract
Lithium is an indispensable ingredient for the next-generation clean technologies. With the aim of identifying opportunities to improve lithium resource efficiency, this study establishes a trade-linked material flow analysis framework to analyze the lithium flow both along its life cycle on the national level and international trade on the global level. The results indicate that global lithium production reached 171kt lithium carbonate equivalent in 2014. Chile, Australia and China played the leading roles in lithium commodity production. 75% of lithium-ion batteries are used for consumer electronics. From the international trade perspective, the trade of lithium commodities existed commonly all around the world. The major origins of lithium minerals and chemicals were Chile, Australia and Argentina. China was the major destination of lithium minerals and chemicals. Lithium carbonate, ores, and lithium concentrate were the three dominating trade commodities, altogether accounting for 67% of total trade volume. This study implies high necessity of establishing domestic lithium recycling system and international cooperation between trade partners in lithium waste management.

Suggested Citation

  • Sun, Xin & Hao, Han & Zhao, Fuquan & Liu, Zongwei, 2017. "Tracing global lithium flow: A trade-linked material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 50-61.
  • Handle: RePEc:eee:recore:v:124:y:2017:i:c:p:50-61
    DOI: 10.1016/j.resconrec.2017.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917301118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ziemann, Saskia & Weil, Marcel & Schebek, Liselotte, 2012. "Tracing the fate of lithium––The development of a material flow model," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 26-34.
    2. Miedema, Jan H. & Moll, Henri C., 2013. "Lithium availability in the EU27 for battery-driven vehicles: The impact of recycling and substitution on the confrontation between supply and demand until2050," Resources Policy, Elsevier, vol. 38(2), pages 204-211.
    3. Zeng, Xianlai & Li, Jinhui, 2013. "Implications for the carrying capacity of lithium reserve in China," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 58-63.
    4. Richa, Kirti & Babbitt, Callie W. & Gaustad, Gabrielle & Wang, Xue, 2014. "A future perspective on lithium-ion battery waste flows from electric vehicles," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 63-76.
    5. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Geng, Yong & Sarkis, Joseph, 2017. "Material flow analysis of lithium in China," Resources Policy, Elsevier, vol. 51(C), pages 100-106.
    6. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jinyu & Luo, Qian & Sun, Xin & Zhang, Zitao & Dong, Xuesong, 2023. "The impact of renewable energy consumption on lithium trade patterns: An industrial chain perspective," Resources Policy, Elsevier, vol. 85(PA).
    2. Golmohammadzadeh, Rabeeh & Faraji, Fariborz & Jong, Brian & Pozo-Gonzalo, Cristina & Banerjee, Parama Chakraborty, 2022. "Current challenges and future opportunities toward recycling of spent lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Li, Baihua & Li, Huajiao & Dong, Zhiliang & Lu, Yu & Liu, Nairong & Hao, Xiaoqing, 2021. "The global copper material trade network and risk evaluation: A industry chain perspective," Resources Policy, Elsevier, vol. 74(C).
    4. Hao, Hongchang & Ma, Zhe & Wang, Anjian & Xing, Wanli & Song, Hao & Zhao, Pei & Wei, Jiangqiao & Zheng, Shuxian, 2023. "Modeling and assessing the robustness of the lithium global trade system against cascading failures," Resources Policy, Elsevier, vol. 85(PB).
    5. Jin, Pengfei & Wang, Saige & Meng, Zheng & Chen, Bin, 2023. "China's lithium supply chains: Network evolution and resilience assessment," Resources Policy, Elsevier, vol. 87(PB).
    6. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Ren, Zhijun & Li, Huajie & Yan, Wenyi & Lv, Weiguang & Zhang, Guangming & Lv, Longyi & Sun, Li & Sun, Zhi & Gao, Wenfang, 2023. "Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Shao, Liuguo & Kou, Wenwen & Zhang, Hua, 2022. "The evolution of the global cobalt and lithium trade pattern and the impacts of the low-cobalt technology of lithium batteries based on multiplex network," Resources Policy, Elsevier, vol. 76(C).
    9. Zhiyong Zhou & Jianhui Huang & Ming Li & Yao Lu, 2022. "The Dynamic Evolution of the Material Flow of Lithium Resources in China," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    10. Cherepovitsyn, Alexey & Solovyova, Victoria & Dmitrieva, Diana, 2023. "New challenges for the sustainable development of the rare-earth metals sector in Russia: Transforming industrial policies," Resources Policy, Elsevier, vol. 81(C).
    11. Tzu-Chun Sheng & Alvin Chang & Shu-Hui Lan & Shih-Cheng Li, 2020. "Analysis of the Dividend Policy Decision-Making Mechanism of Chinese and Taiwanese Lithium Battery Industries," Mathematics, MDPI, vol. 8(10), pages 1-16, October.
    12. Mu, Dong & Ren, Huanyu & Wang, Chao & Yue, Xiongping & Du, Jianbang & Ghadimi, Pezhman, 2023. "Structural characteristics and disruption ripple effect in a meso-level electric vehicle Lithium-ion battery supply chain network," Resources Policy, Elsevier, vol. 80(C).
    13. Hu, Xiaoqian & Wang, Chao & Lim, Ming K. & Chen, Wei-Qiang & Teng, Limin & Wang, Peng & Wang, Heming & Zhang, Chao & Yao, Cuiyou & Ghadimi, Pezhman, 2023. "Critical systemic risk sources in global lithium-ion battery supply networks: Static and dynamic network perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    14. Elisa Alonso & David Pineault & Nedal T. Nassar, 2023. "Streamlined approach for assessing embedded consumption of lithium and cobalt in the United States," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 33-42, February.
    15. Wang, Wei & Wu, Yufeng, 2017. "An overview of recycling and treatment of spent LiFePO4 batteries in China," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 233-243.
    16. Hao, Hongchang & Xing, Wanli & Wang, Anjian & Song, Hao & Han, Yawen & Zhao, Pei & Xie, Ziqi & Chen, Xuemei, 2022. "Multi-layer networks research on analyzing supply risk transmission of lithium industry chain," Resources Policy, Elsevier, vol. 79(C).
    17. Olabi, A.G. & Wilberforce, Tabbi & Sayed, Enas Taha & Abo-Khalil, Ahmed G. & Maghrabie, Hussein M. & Elsaid, Khaled & Abdelkareem, Mohammad Ali, 2022. "Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission," Energy, Elsevier, vol. 254(PA).
    18. Yang, Ping & Gao, Xiangyun & Zhao, Yiran & Jia, Nanfei & Dong, Xiaojuan, 2021. "Lithium resource allocation optimization of the lithium trading network based on material flow," Resources Policy, Elsevier, vol. 74(C).
    19. Sun, Xin & Jiao, Yang & Hao, Han & Liu, Zongwei & Zhao, Fuquan, 2024. "Physical and monetary characterization of global nickel flow network," Resources Policy, Elsevier, vol. 94(C).
    20. Shao, Liuguo & Hu, Jianying & Zhang, Hua, 2021. "Evolution of global lithium competition network pattern and its influence factors," Resources Policy, Elsevier, vol. 74(C).
    21. Xun, Dengye & Hao, Han & Sun, Xin & Geng, Jingxuan & Liu, Zongwei & Zhao, Fuquan, 2022. "Modeling the evolvement of regional fuel cell vehicle supply chain: Implications for enhancing supply chain sustainability," International Journal of Production Economics, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiao-Qing & Qin, Meng & Moldovan, Nicoleta-Claudia & Su, Chi-Wei, 2023. "Bubble behaviors in lithium price and the contagion effect: An industry chain perspective," Resources Policy, Elsevier, vol. 83(C).
    2. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    3. Lu, Bin & Liu, Jingru & Yang, Jianxin, 2017. "Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 109-116.
    4. Zhang, Xiaojing & Chang, Hsu-Ling & Su, Chi-Wei & Qin, Meng & Umar, Muhammad, 2024. "Exploring the dynamic interaction between geopolitical risks and lithium prices: A time-varying analysis," Resources Policy, Elsevier, vol. 90(C).
    5. Shao, Liuguo & Kou, Wenwen & Zhang, Hua, 2022. "The evolution of the global cobalt and lithium trade pattern and the impacts of the low-cobalt technology of lithium batteries based on multiplex network," Resources Policy, Elsevier, vol. 76(C).
    6. Liu, Donghui & Gao, Xiangyun & An, Haizhong & Qi, Yabin & Wang, Ze & Jia, Nanfei & Chen, Zhihua, 2020. "Exploring behavior changes of the lithium market in China: Toward technology-oriented future scenarios," Resources Policy, Elsevier, vol. 69(C).
    7. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    8. Chen, Jinyu & Luo, Qian & Sun, Xin & Zhang, Zitao & Dong, Xuesong, 2023. "The impact of renewable energy consumption on lithium trade patterns: An industrial chain perspective," Resources Policy, Elsevier, vol. 85(PA).
    9. Cristina T. Matos & Fabrice Mathieux & Luca Ciacci & Maren Cathrine Lundhaug & María Fernanda Godoy León & Daniel Beat Müller & Jo Dewulf & Konstantinos Georgitzikis & Jaco Huisman, 2022. "Material system analysis: A novel multilayer system approach to correlate EU flows and stocks of Li‐ion batteries and their raw materials," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1261-1276, August.
    10. Wesselkämper, Jannis & Dahrendorf, Laureen & Mauler, Lukas & Lux, Simon & von Delft, Stephan, 2024. "Towards circular battery supply chains: Strategies to reduce material demand and the impact on mining and recycling," Resources Policy, Elsevier, vol. 95(C).
    11. Shao, Liuguo & Hu, Jianying & Zhang, Hua, 2021. "Evolution of global lithium competition network pattern and its influence factors," Resources Policy, Elsevier, vol. 74(C).
    12. Zhiyong Zhou & Jianhui Huang & Ming Li & Yao Lu, 2022. "The Dynamic Evolution of the Material Flow of Lithium Resources in China," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    13. Liu, Donghui & Gao, Xiangyun & An, Haizhong & Jia, Nanfei & Wang, Anjian, 2024. "Exploring market instability of global lithium resources based on chaotic dynamics analysis," Resources Policy, Elsevier, vol. 88(C).
    14. Elisa Alonso & David Pineault & Nedal T. Nassar, 2023. "Streamlined approach for assessing embedded consumption of lithium and cobalt in the United States," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 33-42, February.
    15. Sterba, Jiri & Krzemień, Alicja & Riesgo Fernández, Pedro & Escanciano García-Miranda, Carmen & Fidalgo Valverde, Gregorio, 2019. "Lithium mining: Accelerating the transition to sustainable energy," Resources Policy, Elsevier, vol. 62(C), pages 416-426.
    16. Zeng, Xianlai & Li, Jinhui, 2015. "On the sustainability of cobalt utilization in China," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 12-18.
    17. Wang, Jiajia & Yue, Xiyan & Wang, Peifen & Yu, Tao & Du, Xiao & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2022. "Electrochemical technologies for lithium recovery from liquid resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    19. Jiang, Meihui & An, Haizhong & Guan, Qing & Sun, Xiaoqi, 2018. "Global embodied mineral flow between industrial sectors: A network perspective," Resources Policy, Elsevier, vol. 58(C), pages 192-201.
    20. Dhiya Durani Sofian Azizi & Marlia M. Hanafiah & Kok Sin Woon, 2023. "Material Flow Analysis in WEEE Management for Circular Economy: A Content Review on Applications, Limitations, and Future Outlook," Sustainability, MDPI, vol. 15(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:124:y:2017:i:c:p:50-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.