[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v401y2014icp228-250.html
   My bibliography  Save this article

Can log-periodic power law structures arise from random fluctuations?

Author

Listed:
  • Wosnitza, Jan Henrik
  • Leker, Jens
Abstract
Recent research has established log-periodic power law (LPPL) patterns prior to the detonation of the German stock index (DAX) bubble in 1998. The purpose of this article is to explore whether a Langevin equation extracted from real world data can generate synthetic time series with comparable LPPL structures. To this end, we first estimate the stochastic process underlying the DAX log-returns during the period from mid-1997 until end-2003. The employed data set contains about 3.93⋅106 intraday DAX quotes at a sampling rate of 15 s. Our results indicate that the DAX log-returns can be described as a Markov process. As a consequence, a Langevin equation is derived. Based on this model equation, we run extensive simulations in order to generate 100 synthetic DAX trajectories each covering 3000 trading days. We find LPPL behavior in ten artificial time series. Moreover, we can establish a link between LPPL patterns and ensuing bubble bursts in seven synthetic 600-week windows. However, the LPPL components in most synthetic trajectories differ fundamentally from those LPPL structures that have previously been detected in real financial time series. Summarized, this paper demonstrates that LPPL structures are not necessarily the signature of imitative behavior among investors but can also stem from noise, even though the likelihood of this is extremely low. Thus, our findings confirm with high statistical confidence that the LPPL structures in the DAX development are rooted deeper than only in the random fluctuations of the German stock market.

Suggested Citation

  • Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
  • Handle: RePEc:eee:phsmap:v:401:y:2014:i:c:p:228-250
    DOI: 10.1016/j.physa.2014.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114000119
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Wanfeng & Woodard, Ryan & Sornette, Didier, 2012. "Leverage bubble," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 180-186.
      • Wanfeng Yan & Ryan Woodard & Didier Sornette, 2010. "Leverage Bubble," Papers 1011.0458, arXiv.org, revised Nov 2010.
    2. Clark, Andrew, 2004. "Evidence of log-periodicity in corporate bond spreads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 585-595.
    3. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    4. A. P. Nawroth & J. Peinke, 2006. "Small scale behavior of financial data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 147-151, March.
    5. Didier Sornette & Wei-Xing Zhou, 2002. "The US 2000-2002 market descent: How much longer and deeper?," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 468-481.
    6. D. Sornette, 2003. "Critical Market Crashes," Papers cond-mat/0301543, arXiv.org.
    7. Matsushita, Raul & da Silva, Sergio & Figueiredo, Annibal & Gleria, Iram, 2006. "Log-periodic crashes revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 331-335.
    8. George Chang & James Feigenbaum, 2006. "A Bayesian analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 15-36.
    9. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    10. Jiang, Zhi-Qiang & Zhou, Wei-Xing & Sornette, Didier & Woodard, Ryan & Bastiaensen, Ken & Cauwels, Peter, 2010. "Bubble diagnosis and prediction of the 2005-2007 and 2008-2009 Chinese stock market bubbles," Journal of Economic Behavior & Organization, Elsevier, vol. 74(3), pages 149-162, June.
    11. Czarnecki, Łukasz & Grech, Dariusz & Pamuła, Grzegorz, 2008. "Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6801-6811.
    12. Zhou, Wei-Xing & Sornette, Didier, 2008. "Analysis of the real estate market in Las Vegas: Bubble, seasonal patterns, and prediction of the CSW indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 243-260.
    13. Anders Johansen & Didier Sornette, 2010. "Shocks, Crashes and Bubbles in Financial Markets," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 53(2), pages 201-253.
    14. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    15. Wanfeng Yan & Ryan Woodard & Didier Sornette, 2010. "Diagnosis and Prediction of Tipping Points in Financial Markets: Crashes and Rebounds," Papers 1001.0265, arXiv.org, revised Feb 2010.
    16. W. -X. Zhou & D. Sornette, 2003. "Renormalization Group Analysis of the 2000-2002 anti-bubble in the US S&P 500 index: Explanation of the hierarchy of 5 crashes and Prediction," Papers physics/0301023, arXiv.org, revised Aug 2003.
    17. Wei-Xing Zhou & Didier Sornette, 2002. "Statistical Significance Of Periodicity And Log-Periodicity With Heavy-Tailed Correlated Noise," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 137-169.
    18. Zhou, Wei-Xing & Sornette, Didier, 2003. "2000–2003 real estate bubble in the UK but not in the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 249-263.
    19. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    20. C. Renner & J. Peinke & R. Friedrich, 2000. "Markov Properties Of High Frequency Exchange Rate Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 415-416.
    21. Zhou, Wei-Xing & Sornette, Didier, 2006. "Is there a real-estate bubble in the US?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 297-308.
    22. J. A. Feigenbaum, 2001. "More on a statistical analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 527-532.
    23. C. Renner & J. Peinke & R. Friedrich, 2001. "Markov properties of high frequency exchange rate data," Papers cond-mat/0102494, arXiv.org, revised Apr 2001.
    24. George Chang & James Feigenbaum, 2008. "Detecting log-periodicity in a regime-switching model of stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 723-738.
    25. Didier SORNETTE, 2009. "Dragon-Kings, Black Swans and the Prediction of Crises," Swiss Finance Institute Research Paper Series 09-36, Swiss Finance Institute.
    26. Anders Johansen & Didier Sornette, 2000. "The Nasdaq crash of April 2000: Yet another example of log-periodicity in a speculative bubble ending in a crash," Papers cond-mat/0004263, arXiv.org, revised May 2000.
    27. Wanfeng Yan & Reda Rebib & Ryan Woodard & Didier Sornette, "undated". "Detection of Crashes and Rebounds in Major Equity Markets," Working Papers ETH-RC-11-001, ETH Zurich, Chair of Systems Design.
    28. Zhou, Wei-Xing & Sornette, Didier, 2006. "Fundamental factors versus herding in the 2000–2005 US stock market and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 459-482.
    29. Sornette, Didier & Zhou, Wei-Xing, 2006. "Predictability of large future changes in major financial indices," International Journal of Forecasting, Elsevier, vol. 22(1), pages 153-168.
    30. D. Sornette, "undated". "Dragon-Kings, Black Swans and the Prediction of Crises," Working Papers CCSS-09-005, ETH Zurich, Chair of Systems Design.
    31. N/A, 2000. "The High Exchange Rate," National Institute Economic Review, National Institute of Economic and Social Research, vol. 173(1), pages 9-11, July.
    32. Sornette, Didier & Johansen, Anders, 1997. "Large financial crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 411-422.
    33. Nawroth, Andreas P. & Peinke, Joachim, 2007. "Medium and small-scale analysis of financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 193-198.
    34. Zhou, Wei-Xing & Sornette, Didier, 2003. "Renormalization group analysis of the 2000–2002 anti-bubble in the US S&P500 index: explanation of the hierarchy of five crashes and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(3), pages 584-604.
    35. J.A. Feigenbaum, 2001. "A statistical analysis of log-periodic precursors to financial crashes-super-," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 346-360, March.
    36. Yan, Wanfeng & Woodard, Ryan & Sornette, Didier, 2012. "Diagnosis and prediction of rebounds in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1361-1380.
    37. Renner, Ch. & Peinke, J. & Friedrich, R., 2001. "Evidence of Markov properties of high frequency exchange rate data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 298(3), pages 499-520.
    38. Anders Johansen & Didier Sornette, 1999. "Critical Crashes," Papers cond-mat/9901035, arXiv.org.
    39. M. Bartolozzi & S. Drozdz & D. B. Leinweber & J. Speth & A. W. Thomas, 2005. "Self-Similar Log-Periodic Structures in Western Stock Markets from 2000," Papers cond-mat/0501513, arXiv.org, revised Mar 2005.
    40. A. Johansen & D. Sornette, 1999. "Financial ``Anti-Bubbles'': Log-Periodicity in Gold and Nikkei collapses," Papers cond-mat/9901268, arXiv.org.
    41. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    42. Sornette, Didier & Woodard, Ryan & Zhou, Wei-Xing, 2009. "The 2006–2008 oil bubble: Evidence of speculation, and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1571-1576.
    43. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Why credit risk markets are predestined for exhibiting log-periodic power law structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 427-449.
    44. Drożdż, S. & Grümmer, F. & Ruf, F. & Speth, J., 2003. "Log-periodic self-similarity: an emerging financial law?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 174-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu, Min & Zhu, Wei, 2020. "Detection of Chinese stock market bubbles with LPPLS confidence indicator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    2. Pawel Dlotko & Simon Rudkin, 2019. "The Topology of Time Series: Improving Recession Forecasting from Yield Spreads," Working Papers 2019-02, Swansea University, School of Management.
    3. Gharib, Cheima & Mefteh-Wali, Salma & Serret, Vanessa & Ben Jabeur, Sami, 2021. "Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach," Resources Policy, Elsevier, vol. 74(C).
    4. Soares, Abner D. & Moura Jr., Newton J. & Ribeiro, Marcelo B., 2016. "Tsallis statistics in the income distribution of Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 158-171.
    5. Zhou, Wei & Huang, Yang & Chen, Jin, 2018. "The bubble and anti-bubble risk resistance analysis on the metal futures in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 947-957.
    6. Vakhtina, Elena & Wosnitza, Jan Henrik, 2015. "Capital market based warning indicators of bank runs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 304-320.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    2. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    3. Vakhtina, Elena & Wosnitza, Jan Henrik, 2015. "Capital market based warning indicators of bank runs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 304-320.
    4. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Why credit risk markets are predestined for exhibiting log-periodic power law structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 427-449.
    5. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
    6. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    7. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    8. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    9. Shu, Min & Zhu, Wei, 2020. "Detection of Chinese stock market bubbles with LPPLS confidence indicator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    10. Song, Ruiqiang & Shu, Min & Zhu, Wei, 2022. "The 2020 global stock market crash: Endogenous or exogenous?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    11. Li, Chong, 2017. "Log-periodic view on critical dates of the Chinese stock market bubbles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 305-311.
    12. Ruiqiang Song & Min Shu & Wei Zhu, 2021. "The 2020 Global Stock Market Crash: Endogenous or Exogenous?," Papers 2101.00327, arXiv.org.
    13. Shu, Min & Song, Ruiqiang & Zhu, Wei, 2021. "The ‘COVID’ crash of the 2020 U.S. Stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    14. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    15. Jiang, Zhi-Qiang & Zhou, Wei-Xing & Sornette, Didier & Woodard, Ryan & Bastiaensen, Ken & Cauwels, Peter, 2010. "Bubble diagnosis and prediction of the 2005-2007 and 2008-2009 Chinese stock market bubbles," Journal of Economic Behavior & Organization, Elsevier, vol. 74(3), pages 149-162, June.
    16. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    17. John Fry, 2014. "Bubbles, shocks and elementary technical trading strategies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(1), pages 1-13, January.
    18. Sornette, Didier & Woodard, Ryan & Zhou, Wei-Xing, 2009. "The 2006–2008 oil bubble: Evidence of speculation, and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1571-1576.
    19. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    20. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 'COVID' Crash of the 2020 U.S. Stock Market," Papers 2101.03625, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:401:y:2014:i:c:p:228-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.