[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v6y1988i5p305-309.html
   My bibliography  Save this article

A finite mixture model for the clustering of mixed-mode data

Author

Listed:
  • Everitt, B. S.
Abstract
This paper presents a finite mixture density which might be a potentially useful model for the clustering of mixed mode data. A simplex algorithm is used to obtain maximum likelihood estimates and several small scale numerical examples indicate that its performance is relatively satisfactory.

Suggested Citation

  • Everitt, B. S., 1988. "A finite mixture model for the clustering of mixed-mode data," Statistics & Probability Letters, Elsevier, vol. 6(5), pages 305-309, April.
  • Handle: RePEc:eee:stapro:v:6:y:1988:i:5:p:305-309
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(88)90004-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isabella Morlini, 2012. "A latent variables approach for clustering mixed binary and continuous variables within a Gaussian mixture model," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(1), pages 5-28, April.
    2. William H. Greene & David A. Hensher, 2013. "Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model," Applied Economics, Taylor & Francis Journals, vol. 45(14), pages 1897-1902, May.
    3. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    4. Morey, Edward R. & Thiene, Mara, 2017. "Can Personality Traits Explain Where and With Whom You Recreate? A Latent-Class Site-Choice Model Informed by Estimates From Mixed-Mode LC Cluster Models With Latent-Personality Traits," Ecological Economics, Elsevier, vol. 138(C), pages 223-237.
    5. Barrington-Leigh, C.P., 2024. "The econometrics of happiness: Are we underestimating the returns to education and income?," Journal of Public Economics, Elsevier, vol. 230(C).
    6. Du, Hua & Han, Qi & de Vries, Bauke & Sun, Jun, 2024. "Community solar PV adoption in residential apartment buildings: A case study on influencing factors and incentive measures in Wuhan," Applied Energy, Elsevier, vol. 354(PA).
    7. David Hensher & Andrew Collins & William Greene, 2013. "Accounting for attribute non-attendance and common-metric aggregation in a probabilistic decision process mixed multinomial logit model: a warning on potential confounding," Transportation, Springer, vol. 40(5), pages 1003-1020, September.
    8. Melissa Scharoun-Lee & Penny Gordon-Larsen & Linda Adair & Barry Popkin & Jay Kaufman & Chirayath Suchindran, 2011. "Intergenerational Profiles of Socioeconomic (Dis)advantage and Obesity During the Transition to Adulthood," Demography, Springer;Population Association of America (PAA), vol. 48(2), pages 625-651, May.
    9. Ranalli, Monia & Rocci, Roberto, 2017. "Mixture models for mixed-type data through a composite likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 87-102.
    10. Stefan Boes & Rainer Winkelmann, 2006. "Ordered response models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 167-181, March.
    11. Monia Ranalli & Roberto Rocci, 2024. "Composite likelihood methods for parsimonious model-based clustering of mixed-type data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 381-407, June.
    12. Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
    13. William Greene, 2014. "Models for ordered choices," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 15, pages 333-362, Edward Elgar Publishing.
    14. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    15. Moustaki, Irini & Papageorgiou, Ioulia, 2005. "Latent class models for mixed variables with applications in Archaeometry," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 659-675, March.
    16. Gerhard Tutz & Micha Schneider & Maria Iannario & Domenico Piccolo, 2017. "Mixture models for ordinal responses to account for uncertainty of choice," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 281-305, June.
    17. Silvia Cagnone & Cinzia Viroli, 2018. "Multivariate latent variable transition models of longitudinal mixed data: an analysis on alcohol use disorder," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1399-1418, November.
    18. Damien McParland & Isobel Claire Gormley, 2016. "Model based clustering for mixed data: clustMD," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 155-169, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:6:y:1988:i:5:p:305-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.