[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/jfinec/v135y2020i2p271-292.html
   My bibliography  Save this article

Shrinking the cross-section

Author

Listed:
  • Kozak, Serhiy
  • Nagel, Stefan
  • Santosh, Shrihari
Abstract
We construct a robust stochastic discount factor (SDF) summarizing the joint explanatory power of a large number of cross-sectional stock return predictors. Our method achieves robust out-of-sample performance in this high-dimensional setting by imposing an economically motivated prior on SDF coefficients that shrinks contributions of low-variance principal components of the candidate characteristics-based factors. We find that characteristics-sparse SDFs formed from a few such factors—e.g., the four- or five-factor models in the recent literature—cannot adequately summarize the cross-section of expected stock returns. However, an SDF formed from a small number of principal components performs well.

Suggested Citation

  • Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020. "Shrinking the cross-section," Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
  • Handle: RePEc:eee:jfinec:v:135:y:2020:i:2:p:271-292
    DOI: 10.1016/j.jfineco.2019.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304405X19301655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jfineco.2019.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    3. Tuomo Vuolteenaho, 2002. "What Drives Firm‐Level Stock Returns?," Journal of Finance, American Finance Association, vol. 57(1), pages 233-264, February.
    4. Hansen, Lars Peter & Jagannathan, Ravi, 1997. "Assessing Specification Errors in Stochastic Discount Factor Models," Journal of Finance, American Finance Association, vol. 52(2), pages 557-590, June.
    5. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    6. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    7. Hansen, Lars Peter & Jagannathan, Ravi, 1991. "Implications of Security Market Data for Models of Dynamic Economies," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 225-262, April.
    8. Eugene F. Fama & Kenneth R. French, 2008. "Dissecting Anomalies," Journal of Finance, American Finance Association, vol. 63(4), pages 1653-1678, August.
    9. Huerta, Ramon & Corbacho, Fernando & Elkan, Charles, 2013. "Nonlinear support vector machines can systematically identify stocks with high and low future returns," Algorithmic Finance, IOS Press, vol. 2(1), pages 45-58.
    10. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    11. Lewellen, Jonathan & Nagel, Stefan & Shanken, Jay, 2010. "A skeptical appraisal of asset pricing tests," Journal of Financial Economics, Elsevier, vol. 96(2), pages 175-194, May.
    12. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    13. Pastor, Lubos & Stambaugh, Robert F., 2000. "Comparing asset pricing models: an investment perspective," Journal of Financial Economics, Elsevier, vol. 56(3), pages 335-381, June.
    14. Francisco Barillas & Jay Shanken, 2018. "Comparing Asset Pricing Models," Journal of Finance, American Finance Association, vol. 73(2), pages 715-754, April.
    15. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    16. Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2017. "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4389-4436.
    17. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J. & Uppal, Raman, 2017. "A Portfolio Perspective on the Multitude of Firm Characteristics," CEPR Discussion Papers 12417, C.E.P.R. Discussion Papers.
    18. R. David Mclean & Jeffrey Pontiff, 2016. "Does Academic Research Destroy Stock Return Predictability?," Journal of Finance, American Finance Association, vol. 71(1), pages 5-32, February.
    19. Kewei Hou & Chen Xue & Lu Zhang, 2015. "Editor's Choice Digesting Anomalies: An Investment Approach," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 650-705.
    20. Robert Novy-Marx & Mihail Velikov, 2016. "A Taxonomy of Anomalies and Their Trading Costs," The Review of Financial Studies, Society for Financial Studies, vol. 29(1), pages 104-147.
    21. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    22. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    23. Clifford S. Asness & Tobias J. Moskowitz & Lasse Heje Pedersen, 2013. "Value and Momentum Everywhere," Journal of Finance, American Finance Association, vol. 68(3), pages 929-985, June.
    24. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    25. Serhiy Kozak & Stefan Nagel & Shrihari Santosh, 2018. "Interpreting Factor Models," Journal of Finance, American Finance Association, vol. 73(3), pages 1183-1223, June.
    26. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    27. Eugene F. Fama & Kenneth R. French, 2016. "Dissecting Anomalies with a Five-Factor Model," The Review of Financial Studies, Society for Financial Studies, vol. 29(1), pages 69-103.
    28. Lin, Xiaoji & Zhang, Lu, 2013. "The investment manifesto," Journal of Monetary Economics, Elsevier, vol. 60(3), pages 351-366.
    29. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    2. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J. & Uppal, Raman, 2017. "A Portfolio Perspective on the Multitude of Firm Characteristics," CEPR Discussion Papers 12417, C.E.P.R. Discussion Papers.
    3. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    4. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    5. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
    6. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    7. Gregory Nazaire & Maria Pacurar & Oumar Sy, 2020. "Betas versus characteristics: A practical perspective," European Financial Management, European Financial Management Association, vol. 26(5), pages 1385-1413, November.
    8. Sun, Chuanping, 2024. "Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach," Journal of Empirical Finance, Elsevier, vol. 77(C).
    9. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    10. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    11. Geertsema, Paul & Lu, Helen, 2020. "The correlation structure of anomaly strategies," Journal of Banking & Finance, Elsevier, vol. 119(C).
    12. Valentin Haddad & Serhiy Kozak & Shrihari Santosh & Stijn Van Nieuwerburgh, 2020. "Factor Timing," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1980-2018.
    13. Calvet, Laurent E. & Betermier, Sebastien & Jo, Evan, 2019. "A Supply and Demand Approach to Equity Pricing," CEPR Discussion Papers 13974, C.E.P.R. Discussion Papers.
    14. Huber, Daniel & Jacobs, Heiko & Müller, Sebastian & Preissler, Fabian, 2023. "International factor models," Journal of Banking & Finance, Elsevier, vol. 150(C).
    15. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    16. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    17. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    18. Robert F. Stambaugh & Yu Yuan, 2017. "Mispricing Factors," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1270-1315.
    19. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
    20. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.

    More about this item

    Keywords

    Factor models; SDF; Cross section; Shrinkage; Machine learning;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfinec:v:135:y:2020:i:2:p:271-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505576 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.