[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v12y2019icp148-166.html
   My bibliography  Save this article

The class of copulas arising from squared distributions: Properties and inference

Author

Listed:
  • Quessy, Jean-François
  • Durocher, Martin
Abstract
A very general class of multivariate copulas is introduced. These copulas arise as the dependence structures that can be extracted from random vectors whose components are squared. The main theoretical properties of the new models are investigated and general formulas for the Kendall, Spearman and tail dependence measures are derived. The construction gives birth to new dependence models, including radially asymmetric versions of popular bivariate copulas like the Plackett, Frank and Normal dependence structures, as well as to the multivariate copulas of normal variance mixture models; the latter models are suitable in arbitrary dimensions and thus are attractive for multivariate, possibly high-dimensional, asymmetric dependence modeling. Suitably adapted parameter estimation strategies are also proposed and their properties are investigated with simulations. The newly introduced models and inferential tools are illustrated on the Nutrient dataset.

Suggested Citation

  • Quessy, Jean-François & Durocher, Martin, 2019. "The class of copulas arising from squared distributions: Properties and inference," Econometrics and Statistics, Elsevier, vol. 12(C), pages 148-166.
  • Handle: RePEc:eee:ecosta:v:12:y:2019:i:c:p:148-166
    DOI: 10.1016/j.ecosta.2019.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306219300103
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2019.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    3. Anne‐Catherine Favre & Jean‐François Quessy & Marie‐Hélène Toupin, 2018. "The new family of Fisher copulas to model upper tail dependence and radial asymmetry: Properties and application to high‐dimensional rainfall data," Environmetrics, John Wiley & Sons, Ltd., vol. 29(3), May.
    4. Nelsen, Roger B. & Quesada-Molina, José Juan & Rodríguez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2003. "Kendall distribution functions," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 263-268, November.
    5. Christian Genest & Jean‐François Quessy & Bruno Rémillard, 2006. "Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 337-366, June.
    6. Kozubowski, Tomasz J. & Podgórski, Krzysztof & Rychlik, Igor, 2013. "Multivariate generalized Laplace distribution and related random fields," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 59-72.
    7. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    8. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    9. Quessy, Jean-François & Rivest, Louis-Paul & Toupin, Marie-Hélène, 2016. "On the family of multivariate chi-square copulas," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 40-60.
    10. Claudia Klüppelberg & Gabriel Kuhn, 2009. "Copula structure analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 737-753, June.
    11. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    12. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marius Hofert & Johanna F. Ziegel, 2021. "Matrix-Tilted Archimedean Copulas," Risks, MDPI, vol. 9(4), pages 1-24, April.
    2. Tarik Bahraoui & Jean‐François Quessy, 2022. "Tests of multivariate copula exchangeability based on Lévy measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1215-1243, September.
    3. Savinov, Evgeniy & Shamraeva, Victoria, 2023. "On a Rosenblatt-type transformation of multivariate copulas," Econometrics and Statistics, Elsevier, vol. 25(C), pages 39-48.
    4. Mohamed Belalia & Jean-François Quessy, 2024. "Generalized simulated method-of-moments estimators for multivariate copulas," Statistical Papers, Springer, vol. 65(8), pages 4811-4841, October.
    5. Nasri, Bouchra R., 2020. "On non-central squared copulas," Statistics & Probability Letters, Elsevier, vol. 161(C).
    6. Jean-François Quessy, 2021. "On nonparametric tests of multivariate meta-ellipticity," Statistical Papers, Springer, vol. 62(5), pages 2283-2310, October.
    7. Billio Monica & Frattarolo Lorenzo & Guégan Dominique, 2021. "Multivariate radial symmetry of copula functions: finite sample comparison in the i.i.d case," Dependence Modeling, De Gruyter, vol. 9(1), pages 43-61, January.
    8. Cong, Lin & Yao, Weixin, 2021. "A Likelihood Ratio Test of a Homoscedastic Multivariate Normal Mixture Against a Heteroscedastic Multivariate Normal Mixture," Econometrics and Statistics, Elsevier, vol. 18(C), pages 79-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Belalia & Jean-François Quessy, 2024. "Generalized simulated method-of-moments estimators for multivariate copulas," Statistical Papers, Springer, vol. 65(8), pages 4811-4841, October.
    2. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    3. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    4. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    5. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    6. Abdulhamid A. Alzaid & Weaam M. Alhadlaq, 2023. "A New Family of Archimedean Copulas: The Half-Logistic Family of Copulas," Mathematics, MDPI, vol. 12(1), pages 1-18, December.
    7. Hok Shing Kwong & Saralees Nadarajah, 2022. "A New Robust Class of Skew Elliptical Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1669-1691, September.
    8. Diks, Cees & Fang, Hao, 2020. "Comparing density forecasts in a risk management context," International Journal of Forecasting, Elsevier, vol. 36(2), pages 531-551.
    9. Genest, Christian & Masiello, Esterina & Tribouley, Karine, 2009. "Estimating copula densities through wavelets," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 170-181, April.
    10. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    11. Kim, Daeyoung & Kim, Jong-Min & Liao, Shu-Min & Jung, Yoon-Sung, 2013. "Mixture of D-vine copulas for modeling dependence," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 1-19.
    12. Langworthy, Benjamin W. & Stephens, Rebecca L. & Gilmore, John H. & Fine, Jason P., 2021. "Canonical correlation analysis for elliptical copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    13. Bruno Rémillard, 2017. "Goodness-of-Fit Tests for Copulas of Multivariate Time Series," Econometrics, MDPI, vol. 5(1), pages 1-23, March.
    14. Perepolkin, Dmytro & Lindsröm, Erik & Sahlin, Ullrika, 2023. "Quantile-parameterized distributions for expert knowledge elicitation," OSF Preprints tq3an, Center for Open Science.
    15. Mejdoub, Hanène & Ben Arab, Mounira, 2018. "Impact of dependence modeling of non-life insurance risks on capital requirement: D-Vine Copula approach," Research in International Business and Finance, Elsevier, vol. 45(C), pages 208-218.
    16. Zhuang, Haoxin & Diao, Liqun & Yi, Grace Y., 2022. "A Bayesian nonparametric mixture model for grouping dependence structures and selecting copula functions," Econometrics and Statistics, Elsevier, vol. 22(C), pages 172-189.
    17. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    18. Bücher Axel & Jaser Miriam & Min Aleksey, 2021. "Detecting departures from meta-ellipticity for multivariate stationary time series," Dependence Modeling, De Gruyter, vol. 9(1), pages 121-140, January.
    19. Jean-François Quessy, 2021. "On nonparametric tests of multivariate meta-ellipticity," Statistical Papers, Springer, vol. 62(5), pages 2283-2310, October.
    20. Shi, Peng, 2012. "Multivariate longitudinal modeling of insurance company expenses," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 204-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:12:y:2019:i:c:p:148-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.