[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v12y2019icp1-24.html
   My bibliography  Save this article

The shifting seasonal mean autoregressive model and seasonality in the Central England monthly temperature series, 1772–2016

Author

Listed:
  • He, Changli
  • Kang, Jian
  • Teräsvirta, Timo
  • Zhang, Shuhua
Abstract
A new autoregressive model with seasonal dummy variables in which coefficients of seasonal dummies vary smoothly and deterministically over time is introduced. The error variance of the model is seasonally heteroskedastic and multiplicatively decomposed as in ARCH models. This variance is also allowed to be smoothly and deterministically time-varying. Under regularity conditions, consistency and asymptotic normality of the maximum likelihood estimators of parameters of this model is proved. The purpose of the model is to find out how the average monthly temperatures in the well-known central England temperature series have been varying during the period of more than 240 years. The main result is that warming has occurred but that there are notable differences between months. In particular, no warming is found for February, April, May and June.

Suggested Citation

  • He, Changli & Kang, Jian & Teräsvirta, Timo & Zhang, Shuhua, 2019. "The shifting seasonal mean autoregressive model and seasonality in the Central England monthly temperature series, 1772–2016," Econometrics and Statistics, Elsevier, vol. 12(C), pages 1-24.
  • Handle: RePEc:eee:ecosta:v:12:y:2019:i:c:p:1-24
    DOI: 10.1016/j.ecosta.2019.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306219300292
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2019.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Silvennoinen Annastiina & Teräsvirta Timo, 2016. "Testing constancy of unconditional variance in volatility models by misspecification and specification tests," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 347-364, September.
    2. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    3. Daniel Buncic, 2019. "Identification and Estimation Issues in Exponential Smooth Transition Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(3), pages 667-685, June.
    4. Baek, Yae In & Cho, Jin Seo & Phillips, Peter C.B., 2015. "Testing linearity using power transforms of regressors," Journal of Econometrics, Elsevier, vol. 187(1), pages 376-384.
    5. Oberhofer, W & Kmenta, J, 1974. "A General Procedure for Obtaining Maximum Likelihood Estimates in Generalized Regression Models," Econometrica, Econometric Society, vol. 42(3), pages 579-590, May.
    6. Tommaso Proietti & Eric Hillebrand, 2017. "Seasonal changes in central England temperatures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 769-791, June.
    7. Dick van Dijk 1 & Birgit Strikholm & Timo Teräsvirta, 2003. "The effects of institutional and technological change and business cycle fluctuations on seasonal patterns in quarterly industrial production series," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 79-98, June.
    8. Craig, Lee A. & Holt, Matthew T., 2008. "Mechanical refrigeration, seasonality, and the hog-corn cycle in the United States: 1870-1940," Explorations in Economic History, Elsevier, vol. 45(1), pages 30-50, January.
    9. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(1), pages 17-43, March.
    10. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    11. van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for ARCH in the Presence of Additive Outliers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 539-562, Sept.-Oct.
    12. Song, Peter X.K. & Fan, Yanqin & Kalbfleisch, John D., 2005. "Maximization by Parts in Likelihood Inference," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1145-1158, December.
    13. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    14. Franses Philip Hans & de Bruin Paul, 2000. "Seasonal Adjustment and the Business Cycle in Unemployment," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(2), pages 1-14, July.
    15. Terence C. Mills & David I. Harvey, 2003. "Modelling trends in central England temperatures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 35-47.
    16. Ahdi Ajmi & Adnen Ben Nasr & Mohamed Boutahar, 2008. "Seasonal Nonlinear Long Memory Model for the US Inflation Rates," Computational Economics, Springer;Society for Computational Economics, vol. 31(3), pages 243-254, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Changli & Kang, Jian & Teräsvirta, Timo & Zhang, Shuhua, 2021. "Comparing long monthly Chinese and selected European temperature series using the Vector Seasonal Shifting Mean and Covariance Autoregressive model," Energy Economics, Elsevier, vol. 97(C).
    2. He, Changli & Kang, Jian & Silvennoinen, Annastiina & Teräsvirta, Timo, 2024. "Long monthly temperature series and the Vector Seasonal Shifting Mean and Covariance Autoregressive model," Journal of Econometrics, Elsevier, vol. 239(1).
    3. He, Changli & Kang, Jian & Silvennoinen, Annastiina & Teräsvirta, Timo, 2023. "Long monthly European temperature series and the North Atlantic Oscillation," Energy Economics, Elsevier, vol. 126(C).
    4. Proietti, Tommaso & Pedregal, Diego J., 2023. "Seasonality in High Frequency Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 62-82.
    5. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Changli & Kang, Jian & Silvennoinen, Annastiina & Teräsvirta, Timo, 2024. "Long monthly temperature series and the Vector Seasonal Shifting Mean and Covariance Autoregressive model," Journal of Econometrics, Elsevier, vol. 239(1).
    2. He, Changli & Kang, Jian & Teräsvirta, Timo & Zhang, Shuhua, 2021. "Comparing long monthly Chinese and selected European temperature series using the Vector Seasonal Shifting Mean and Covariance Autoregressive model," Energy Economics, Elsevier, vol. 97(C).
    3. Craig, Lee A. & Holt, Matthew T., 2008. "Mechanical refrigeration, seasonality, and the hog-corn cycle in the United States: 1870-1940," Explorations in Economic History, Elsevier, vol. 45(1), pages 30-50, January.
    4. Marcelo Cunha Medeiros & Alvaro Veiga, 2004. "Modelling multiple regimes in financial volatility with a flexible coefficient GARCH model," Textos para discussão 486, Department of Economics PUC-Rio (Brazil).
    5. Anthony D. Hall & Annastiina Silvennoinen & Timo Teräsvirta, 2021. "Four Australian Banks and the Multivariate Time-Varying Smooth Transition Correlation GARCH model," CREATES Research Papers 2021-13, Department of Economics and Business Economics, Aarhus University.
    6. Niklas Ahlgren & Alexander Back & Timo Terasvirta, 2024. "A new GARCH model with a deterministic time-varying intercept," Papers 2410.03239, arXiv.org, revised Oct 2024.
    7. Silvennoinen, Annastiina & Teräsvirta, Timo, 2024. "Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model," Econometrics and Statistics, Elsevier, vol. 32(C), pages 57-72.
    8. Cristina Amado & Annastiina Silvennoinen & Timo Terasvirta, 2017. "Modelling and Forecasting WIG20 Daily Returns," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(3), pages 173-200, September.
    9. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    10. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    11. Aslanidis, Nektarios, 2007. "Business Cycle Regimes in CEECs Production: A Threshold SURE Approach," Working Papers 2072/5318, Universitat Rovira i Virgili, Department of Economics.
    12. Daiki Maki & Yasushi Ota, 2021. "Testing for Time-Varying Properties Under Misspecified Conditional Mean and Variance," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1167-1182, April.
    13. Munehisa Kasuya, 2003. "Regime-Switching Approach to Monetary Policy Effects: Empirical Studies using a Smooth Transition Vector Autoregressive Model," Bank of Japan Working Paper Series Research and Statistics D, Bank of Japan.
    14. Eric Hillebrand & Marcelo C. Medeiros, 2016. "Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 23-41, January.
    15. Carnero, María Ángeles, 2004. "Spurious and hidden volatility," DES - Working Papers. Statistics and Econometrics. WS ws042007, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Campos-Martins, Susana & Amado, Cristina, 2022. "Financial market linkages and the sovereign debt crisis," Journal of International Money and Finance, Elsevier, vol. 123(C).
    17. Choi, Jaedo & Moon, Hyungsik Roger & Cho, Jin Seo, 2024. "Sequentially Estimating The Structural Equation By Power Transformation," Econometric Theory, Cambridge University Press, vol. 40(1), pages 98-161, February.
    18. Dawei Zhang & Zhuo (June) Cheng & Hasan A. Qurban H. Mohammad & Barrie R. Nault, 2015. "Research Commentary—Information Technology Substitution Revisited," Information Systems Research, INFORMS, vol. 26(3), pages 480-495, September.
    19. Gadea Rivas, María Dolores & Gonzalo, Jesús, 2020. "Trends in distributional characteristics: Existence of global warming," Journal of Econometrics, Elsevier, vol. 214(1), pages 153-174.
    20. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, September.

    More about this item

    Keywords

    Global warming; Nonlinear time series; Changing seasonality; Smooth transition; Testing constancy; Time-varying error variance;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:12:y:2019:i:c:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.