(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v46y1990i3p273-308.html
   My bibliography  Save this article

Testing nonnested Euler conditions with quadrature-based methods of approximation

Author

Listed:
  • Ghysels, Eric
  • Hall, Alastair
Abstract
In This Paper We Present a Test for Discriminating Between Two Non-Nested Sets of Euler Conditions Which Have Been Estimated Using Gmm. the Test Is Based on the Encompassing Principle of Mizon and Richard (1986), and Uses Tauchen's (1986) Quadrature-Based Methods for Approximating the Expectation of Nonlinear Functions of Stationary Random Variables. the Test Is Compared to the Procedure Suggested by Singleton (1986).
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Ghysels, Eric & Hall, Alastair, 1990. "Testing nonnested Euler conditions with quadrature-based methods of approximation," Journal of Econometrics, Elsevier, vol. 46(3), pages 273-308, December.
  • Handle: RePEc:eee:econom:v:46:y:1990:i:3:p:273-308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4076(90)90011-H
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marmer, Vadim & Otsu, Taisuke, 2012. "Optimal comparison of misspecified moment restriction models under a chosen measure of fit," Journal of Econometrics, Elsevier, vol. 170(2), pages 538-550.
    2. Otsu, Taisuke & Seo, Myung Hwan & Whang, Yoon-Jae, 2012. "Testing for non-nested conditional moment restrictions using unconditional empirical likelihood," Journal of Econometrics, Elsevier, vol. 167(2), pages 370-382.
    3. Otsu, Taisuke & Whang, Yoon-Jae, 2011. "Testing For Nonnested Conditional Moment Restrictions Via Conditional Empirical Likelihood," Econometric Theory, Cambridge University Press, vol. 27(1), pages 114-153, February.
    4. Ramalho, Joaquim J. S. & Smith, Richard J., 2002. "Generalized empirical likelihood non-nested tests," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 99-125, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:46:y:1990:i:3:p:273-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.