[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v156y2017icp110-113.html
   My bibliography  Save this article

A suggestion for constructing a large time-varying conditional covariance matrix

Author

Listed:
  • Gibson, Heather D.
  • Hall, Stephen G.
  • Tavlas, George S.
Abstract
The construction of large conditional covariance matrices has posed a problem in the empirical literature because the direct extension of the univariate GARCH model to a multivariate setting produces large numbers of parameters to be estimated as the number of equations rises. A number of procedures have previously aimed to simplify the model and restrict the number of parameters, but these procedures typically involve either invalid or undesirable restrictions. This paper suggests an alternative way forward, based on the GARCH approach, which allows conditional covariance matrices of unlimited size to be constructed. The procedure is computationally straightforward to implement. At no point in the procedure is it necessary to estimate anything other than a univariate GARCH model.

Suggested Citation

  • Gibson, Heather D. & Hall, Stephen G. & Tavlas, George S., 2017. "A suggestion for constructing a large time-varying conditional covariance matrix," Economics Letters, Elsevier, vol. 156(C), pages 110-113.
  • Handle: RePEc:eee:ecolet:v:156:y:2017:i:c:p:110-113
    DOI: 10.1016/j.econlet.2017.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176517301684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2017.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nijman, Theo & Sentana, Enrique, 1996. "Marginalization and contemporaneous aggregation in multivariate GARCH processes," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 71-87.
    2. Heather D. Gibson & Stephen G. Hall & George S. Tavlas, 2016. "Measuring Systemic Stress in European Banking Systems," Discussion Papers in Economics 16/19, Division of Economics, School of Business, University of Leicester.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
    5. Komunjer, Ivana, 2001. "Consistent Estimation for Aggregated GARCH," University of California at San Diego, Economics Working Paper Series qt1fp2v3q7, Department of Economics, UC San Diego.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter G. Dunne, 2019. "Positive Liquidity Spillovers from Sovereign Bond-Backed Securities," JRFM, MDPI, vol. 12(2), pages 1-25, April.
    2. David Cronin & Peter Dunne & Kieran McQuinn, 2019. "Have Irish Sovereign Bonds Decoupled from the Euro Area Periphery, and Why?," The Economic and Social Review, Economic and Social Studies, vol. 50(3), pages 529-556.
    3. David Cronin & Peter Dunne, 2019. "Have Sovereign Bond Market Relationships Changed in the Euro Area? Evidence from Italy," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 54(4), pages 250-258, July.
    4. Hussein Hassan & Minko Markovski & Alexander Mihailov, 2022. "COVID-19 Cases and Stock Prices by Sector in Major Economies: What Do We Learn from the Daily Data?," Economics Discussion Papers em-dp2022-04, Department of Economics, University of Reading.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drost, Feike C. & Werker, Bas J. M., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Journal of Econometrics, Elsevier, vol. 74(1), pages 31-57, September.
    2. Eric Jondeau, 2008. "Contemporaneous Aggregation of GARCH Models and Evaluation of the Aggregation Bias," Swiss Finance Institute Research Paper Series 08-06, Swiss Finance Institute.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    4. Komunjer, Ivana, 2001. "Consistent Estimation for Aggregated GARCH," University of California at San Diego, Economics Working Paper Series qt1fp2v3q7, Department of Economics, UC San Diego.
    5. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    8. McMillan, David G. & Speight, Alan E. H., 2001. "Non-ferrous metals price volatility: a component analysis," Resources Policy, Elsevier, vol. 27(3), pages 199-207, September.
    9. Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016. "Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
    10. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    11. Kai Yang & Qingqing Zhang & Xinyang Yu & Xiaogang Dong, 2023. "Bayesian inference for a mixture double autoregressive model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 188-207, May.
    12. Carnero, María Ángeles, 2004. "Spurious and hidden volatility," DES - Working Papers. Statistics and Econometrics. WS ws042007, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Drost, F.C. & Klaasens, C.A.J. & Werker, B.J.M., 1994. "Adaptive Estimation in Time Series Models," Papers 9488, Tilburg - Center for Economic Research.
    14. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    15. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    16. Nijman, Theo & Sentana, Enrique, 1996. "Marginalization and contemporaneous aggregation in multivariate GARCH processes," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 71-87.
    17. van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for ARCH in the Presence of Additive Outliers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 539-562, Sept.-Oct.
    18. Cheung, Yin-Wong & Ng, Lilian K., 1996. "A causality-in-variance test and its application to financial market prices," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 33-48.
    19. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    20. Gonzalez-Rivera, Gloria & Drost, Feike C., 1999. "Efficiency comparisons of maximum-likelihood-based estimators in GARCH models," Journal of Econometrics, Elsevier, vol. 93(1), pages 93-111, November.

    More about this item

    Keywords

    Large conditional covariance matrix; GARCH; Multivariate GARCH;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:156:y:2017:i:c:p:110-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.