[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v274y2023ics0360544223007533.html
   My bibliography  Save this article

Numerical analysis on a self-rectifying impulse turbine with U-shaped duct for oscillating water column wave energy conversion

Author

Listed:
  • Guo, Peng
  • Zhang, Yongliang
  • Chen, Wenchuang
Abstract
In this paper, a novel self-rectifying impulse turbine with U-shaped duct used for oscillating water column wave energy conversion is proposed. It has a pair of fixed, symmetrical and radial-flow guide vane rows, and an axisymmetric, U-shaped duct with increasing cross-sectional area from the rotor to the guide vane rows, therefore it is expected to be relatively simple, reliable and efficient. A three-dimensional (3D) steady-state numerical model and a fully transient model are established for the present turbine. These two models are validated by comparison with experimental results from the published works, respectively, and then used to investigate the steady performance and transient characteristics of the impulse turbine. Effect of the geometry of the guide vanes, the number of the guide vanes, and the hub-to-tip ratio on turbine performance under steady airflows and transient airflows are studied, and the difference between these two models in predicting turbine performance is discussed.

Suggested Citation

  • Guo, Peng & Zhang, Yongliang & Chen, Wenchuang, 2023. "Numerical analysis on a self-rectifying impulse turbine with U-shaped duct for oscillating water column wave energy conversion," Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007533
    DOI: 10.1016/j.energy.2023.127359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223007533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jayashankar, V. & Anand, S. & Geetha, T. & Santhakumar, S. & Jagadeesh Kumar, V. & Ravindran, M. & Setoguchi, T. & Takao, M. & Toyota, K. & Nagata, S., 2009. "A twin unidirectional impulse turbine topology for OWC based wave energy plants," Renewable Energy, Elsevier, vol. 34(3), pages 692-698.
    2. Halder, Paresh & Samad, Abdus & Kim, Jin-Hyuk & Choi, Young-Seok, 2015. "High performance ocean energy harvesting turbine design–A new casing treatment scheme," Energy, Elsevier, vol. 86(C), pages 219-231.
    3. Nazeryan, Mohammad & Lakzian, Esmail, 2018. "Detailed entropy generation analysis of a Wells turbine using the variation of the blade thickness," Energy, Elsevier, vol. 143(C), pages 385-405.
    4. Mala, K. & Jayaraj, J. & Jayashankar, V. & Muruganandam, T.M. & Santhakumar, S. & Ravindran, M. & Takao, M. & Setoguchi, T. & Toyota, K. & Nagata, S., 2011. "A twin unidirectional impulse turbine topology for OWC based wave energy plants – Experimental validation and scaling," Renewable Energy, Elsevier, vol. 36(1), pages 307-314.
    5. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter," Applied Energy, Elsevier, vol. 189(C), pages 1-20.
    6. Liu, Zhen & Cui, Ying & Li, Ming & Shi, Hongda, 2017. "Steady state performance of an axial impulse turbine for oscillating water column wave energy converters," Energy, Elsevier, vol. 141(C), pages 1-10.
    7. Maeda, H & Santhakumar, S & Setoguchi, T & Takao, M & Kinoue, Y & Kaneko, K, 1999. "Performance of an impulse turbine with fixed guide vanesfn2fn2Patent pending. for wave power conversion," Renewable Energy, Elsevier, vol. 17(4), pages 533-547.
    8. Setoguchi, T & Santhakumar, S & Maeda, H & Takao, M & Kaneko, K, 2001. "A review of impulse turbines for wave energy conversion," Renewable Energy, Elsevier, vol. 23(2), pages 261-292.
    9. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Multi-point aerodynamic optimization of the rotor blade sections of an axial-flow impulse air turbine for wave energy conversion," Energy, Elsevier, vol. 45(1), pages 570-580.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hua & Wang, Weijun & Wen, Yadong & Mao, Longbo & Wang, Wenqiang & Mi, Hongju, 2019. "A novel axial flow self-rectifying turbine for use in wave energy converters," Energy, Elsevier, vol. 189(C).
    2. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    3. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Multi-point aerodynamic optimization of the rotor blade sections of an axial-flow impulse air turbine for wave energy conversion," Energy, Elsevier, vol. 45(1), pages 570-580.
    4. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters," Renewable Energy, Elsevier, vol. 50(C), pages 289-298.
    5. Badhurshah, Rameez & Samad, Abdus, 2015. "Multiple surrogate based optimization of a bidirectional impulse turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 74(C), pages 749-760.
    6. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    7. Yongyao Luo & Alexandre Presas & Zhengwei Wang, 2019. "Numerical Analysis of the Influence of Design Parameters on the Efficiency of an OWC Axial Impulse Turbine for Wave Energy Conversion," Energies, MDPI, vol. 12(5), pages 1-12, March.
    8. Falcão, António F.O. & Gato, Luís M.C. & Henriques, João C.C. & Borges, João E. & Pereiras, Bruno & Castro, Francisco, 2015. "A novel twin-rotor radial-inflow air turbine for oscillating-water-column wave energy converters," Energy, Elsevier, vol. 93(P2), pages 2116-2125.
    9. Badhurshah, Rameez & Dudhgaonkar, Prasad & Jalihal, Purnima & Samad, Abdus, 2018. "High efficiency design of an impulse turbine used in oscillating water column to harvest wave energy," Renewable Energy, Elsevier, vol. 121(C), pages 344-354.
    10. Gato, L.M.C. & Maduro, A.R. & Carrelhas, A.A.D. & Henriques, J.C.C. & Ferreira, D.N., 2021. "Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results," Energy, Elsevier, vol. 216(C).
    11. Ying, Pei & Chen, Yong Kang & Xu, Yi Geng, 2015. "An aerodynamic analysis of a novel small wind turbine based on impulse turbine principles," Renewable Energy, Elsevier, vol. 75(C), pages 37-43.
    12. Lopes, Bárbara S. & Gato, Luís M.C. & Falcão, António F.O. & Henriques, João C.C., 2019. "Test results of a novel twin-rotor radial inflow self-rectifying air turbine for OWC wave energy converters," Energy, Elsevier, vol. 170(C), pages 869-879.
    13. Liu, Zhen & Cui, Ying & Xu, Chuanli & Sun, Lixin & Li, Ming & Jin, Jiyuan, 2019. "Experimental and numerical studies on an OWC axial-flow impulse turbine in reciprocating air flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Guo, Peng & Zhang, Yongliang & Chen, Wenchuang & Wang, Chen, 2024. "Fully coupled simulation of dynamic characteristics of a backward bent duct buoy oscillating water column wave energy converter," Energy, Elsevier, vol. 294(C).
    15. Paresh Halder & Hideki Takebe & Krisna Pawitan & Jun Fujita & Shuji Misumi & Tsumoru Shintake, 2020. "Turbine Characteristics of Wave Energy Conversion Device for Extraction Power Using Breaking Waves," Energies, MDPI, vol. 13(4), pages 1-17, February.
    16. Manuel García-Díaz & Bruno Pereiras & Celia Miguel-González & Laudino Rodríguez & Jesús Fernández-Oro, 2021. "CFD Analysis of the Performance of a Double Decker Turbine for Wave Energy Conversion," Energies, MDPI, vol. 14(4), pages 1-19, February.
    17. Halder, Paresh & Samad, Abdus & Thévenin, Dominique, 2017. "Improved design of a Wells turbine for higher operating range," Renewable Energy, Elsevier, vol. 106(C), pages 122-134.
    18. Thakker, Ajit & Hourigan, Fergal, 2005. "A comparison of two meshing schemes for CFD analysis of the impulse turbine for wave energy applications," Renewable Energy, Elsevier, vol. 30(9), pages 1401-1410.
    19. Elhawary, M.A. & Ibrahim, Abdelmaged H. & Sabry, Ashraf S. & Abdel-Rahman, Ehab, 2020. "Experimental study of a small scale bi-directional axial impulse turbine for acoustic-to-mechanical power conversion," Renewable Energy, Elsevier, vol. 159(C), pages 414-426.
    20. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Chai, Shuhong, 2019. "A radial inflow air turbine design for a vented oscillating water column," Energy, Elsevier, vol. 166(C), pages 380-391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.